The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Tires
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Sliding Mode Controlled Half Car Suspension System with Magnetorheological Damper

Anna University-AROCKIA SUTHAN SOOSAIRAJ, ARUNACHALAM K
  • Technical Paper
  • 2020-01-1540
To be published on 2020-06-03 by SAE International in United States
Attenuation of vibrations caused by the road undulance conditions are tedious and very much related to human health and vehicle handling problems. One of the promised approaches to solving these problems in a vehicle suspension system is the use of effective controllers. In this paper, the sliding mode controller (SMC) is designed and used to control the magnetorheological (MR) damper. The performance of the proposed controller is verified by incorporating the controller in a half car vehicle suspension model. In a suspension damper design, Modified Bouc-Wen model is used to characterize the hysteretic behaviour of MR damper parameters. The voltage control algorithm is used to convert the desired force into the varied voltage input to the MR damper. The fail-proof advantage of MR damper is analysed by comparing the results of uncontrolled MR suspension with a passive system. In order to limit the pitch angle and to achieve the improved ride comfort and stability of the vehicle, the vertical displacement of the front and rear body of the half-car model is controlled by the SMC…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Material Characterisation Methodology for Tyre Static and Dynamic Analyses

Applus + Idiada Group, Spain-Bharath Anantharamaiah
Applus IDIADA Group, Spain-Carlos Fidalgo
  • Technical Paper
  • 2020-01-1519
To be published on 2020-06-03 by SAE International in United States
Tyre structures are based on composite materials that constitute numerous layers, each providing specific properties to the tyre mechanic and dynamic behaviour. In principle, the understanding of the partial contributions of the individual layers requires knowledge of its mechanical properties. In case of non-availability of such critical information, it is difficult to perform tyre FE analyses. In the current work, a methodology is proposed to study the tyre static and dynamic behaviour to estimate its constituents properties based on the measured quasi-static responses of the tyre for certain specific loads. As a first step, a simplified tyre numerical model with standard rubber material properties is modeled that can substantively predict the necessary tyre static responses, i.e. radial, longitudinal and lateral stiffness. These responses are correlated with the physical tyre response that are measured using a kinematic and compliance (K&C) test rig in the laboratory. A Design of Experiments (DoE) study, followed by an optimization process, is performed by sampling the material properties of the rubbers to simulate the FE model and match the tyre responses…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Measurement Location Optimization of Component TPA Method for Road Noise

Applus + Idiada Spain-Onno de Boer, Javier Iturbe
Applus Idiada-Beatriz Bragado Pérez
  • Technical Paper
  • 2020-01-1581
To be published on 2020-06-03 by SAE International in United States
In this paper, an investigation on the application of a non-intrusive on-site component Transfer Path Analysis (TPA) method is presented together with the comparison with a previously performed direct blocked forces method. The latter is the more common method to determine interface forces between active and passive parts of an assembly. Force transducers are placed between the investigated structure and a rigid measurement rig. The presented comparison shows an investigated whether the faster and cheaper TPA method was able to produce relevant results. The TPA method used in this work calculated the force component contributions, without disassembly of the interfaces, through the local stiffness of multiple indicator positions per interface combined with operational measurement. The method is based on the application of an inverse-matrix model. This approach was applied to a vehicle road noise investigation carried out on a roller bench at three different roller speeds. A rough surface single axle roller bench in the same conditions as for the blocked forces method was used. The matrix inversion was carried out by using an overdetermined…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Tire NVH Optimization for Future Mobility

CEAT Ltd-Rahul R. Sanghani, Thomas Cherian, Subramaniam Loganathan, Kamal Suhalka, Juban Thomas
  • Technical Paper
  • 2020-01-1520
To be published on 2020-06-03 by SAE International in United States
Vehicle NVH (Noise, Vibration and Harshness) is one of the most critical customer touchpoints which may lead to buying decisions. The importance of Noise inside the cabin is increasing day by day because of the new era of E-mobility and autonomous driving. Noise source could be the engine, powertrain, tyre, suspension components, brake system, etc. depending on driving conditions. Among these, tire noise is being identified as biggest contributor at constant mid-speed driving where engine and powertrain operate at minimum noise and wind noise is also at a moderate level. This driving condition becomes very significant for electric vehicles where engine noise is replaced by motor noise which is a tonal noise at very high frequency. This makes the improvement of tire noise levels quintessential for good cabin acoustic feel. This demands a proactive approach to develop low noise tire platforms for future mobility by leveraging research tools and best practices in the industry. With a greater emphasis on ride and comfort in passenger car vehicles, tyre manufacturers will be challenged to meet stringent harshness…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Acoustic characteristics prediction and optimization of wheel resonators with arbitrary section

SAIC Motor Corporation Limited-Yimin Sun, Junlei Mao
Tongji University-Rong Guo, Tiantian Mi
  • Technical Paper
  • 2020-01-0917
To be published on 2020-04-14 by SAE International in United States
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal simulation and test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics. Combing the transmission loss prediction theory and particle swarm algorithm, the structure parameters of the wheel resonator are optimized. A remarkable attenuation of tire cavity resonance can be observed through test results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Application of a Collision Avoidance Capability Metric

AAA Northern California Nevada & Utah-Paul Wells, Atul Acharya
Dynamic Research Inc.-Jordan Silberling, Joseph Kelly, John Lenkeit
  • Technical Paper
  • 2020-01-1207
To be published on 2020-04-14 by SAE International in United States
This paper describes the development and application of a newly developed metric for evaluating and quantifying the capability of a vehicle/controller (e.g., Automated Vehicle or human driver) to avoid collisions in nearly any potential scenario, including those involving multiple potential collision partners and roadside objects. At its core, this Collision Avoidance Capability (CAC) metric assesses the vehicle’s ability to avoid potential collisions at any point in time. It can also be evaluated at discrete points, or over time intervals. In addition, the CAC methodology potentially provides a real-time indication of courses of action that could be taken to avoid collisions. The CAC calculation evaluates all possible courses of action within a vehicle’s performance limitations, including combinations of braking, accelerating and steering. Graphically, it uses the concept of a “friction ellipse”, which is commonly used in tire modeling and vehicle dynamics as a way of considering the interaction of braking and turning forces generated at the tire contact patches. When this concept is applied to the whole vehicle, and the actual or estimated maximum lateral and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on Factors to Influence Coasting Resistance for Electric Vehicles

Changan Mazda Auto Company-Yong Ren
Chongqing Changan New Energy Auto Co., Ltd.-Guan Gong, Chen Zhao, Xiaohang Zhou, Chenghao Deng, Cheng Yu, Fuyong Yu, Anjian Zhou
  • Technical Paper
  • 2020-01-1068
To be published on 2020-04-14 by SAE International in United States
The research on coasting resistance is vital to electric vehicles, since the smaller the coasting resistance, the longer the coast-down distance. Vehicle coast resistance consists of rolling resistance, vehicle inner resistance and the aerodynamic drag. The vehicle inner resistance is mainly caused by driveline’s friction loss and oil splash loss. The rolling resistance is decided by tire resistance coefficient, which is influenced by tires and road conditions. And the aerodynamic drag is affected by vehicle’s shape and air. In this paper, four factors including tire pressure, road surface condition, atmosphere temperature, and recirculation on or off are examined. Experimental tests have been conducted on three different vehicles: one subcompact sedan, one compact sedan and one subcompact SUV. Then experimental results have been imported to simulation model to investigate the corresponding influence on NEDC range. The outcome shows that, when the tire pressure is 20% less, the average coasting resistance is increased by 1% to 3% depending on vehicle types, which indicates a decrease in NEDC range by around 2%. And with atmosphere temperature in 6…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigations on Headlamp and Car Body Tolerances in Real Life

Audi AG-Michael Hamm, Christian Hinterwalder
  • Technical Paper
  • 2020-01-0635
To be published on 2020-04-14 by SAE International in United States
Good Lighting is cruicial for safe driving at night. Unfortunately many parameters are contributing to the final result of the individual tolerances of car body, dynamics and headlamp: The resulting aim. The paper will collect and analyse tolerance contributors from body parameters like load, tire pressure, suspension as well as aging parameters of chassis and plastic parts.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Facility for Complete Characterization of Suspension Kinematic and Compliance Properties of Wheeled Military Vehicles

SEA, Ltd.-Dale Andreatta, Gary Heydinger, Anmol Sidhu, Scott Zagorski
  • Technical Paper
  • 2020-01-0175
To be published on 2020-04-14 by SAE International in United States
As part of their ongoing efforts to model and predict vehicle dynamics behavior, the US Army’s Ground Vehicle Systems Center procured a facility in two phases. The facility is called the Suspension Parameter Identification and Evaluation Rig (SPIdER) and has a capacity covering all of the military’s wheeled vehicles, with vehicle weights up to 100,000 lbs (45,400 kg), up to 150 inches wide, with any number of axles. The initial phase had the ability to measure bounce and roll kinematic and compliance properties. The SPIdER is the companion machine to the Vehicle Inertia Parameter Measuring Device (VIPER) which measures the inertia properties of vehicles of similar size. In 2015, the final phase of the SPIdER was completed. This phase includes ground plane wheel pad motion so that lateral, longitudinal, and aligning moment compliance and kinematic properties can be measured. These capabilities greatly enhance the SPIdER’s features, giving it the ability for making complete suspension and steering system kinematic and compliance measurements. Horizontal forces and aligning moments can be applied up to the limits of tire…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparative Study on the Effects of the Tread Rubber Compounds on Tire Tractive performance on Ice

Virginia Tech-Hoda Mousavi, Corina Sandu
  • Technical Paper
  • 2020-01-1228
To be published on 2020-04-14 by SAE International in United States
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the train. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focus on the performance of the tires on ice. This study is part of a more comprehensive study to investigate the effect of rubber compounds on performance of the tire on ice. In this study three tires that are completely identical in terms of tire parameters (such as tire dimensions, treat pattern, tire structure, inflation pressure, etc., but have different tread rubber compounds have been investigated. Several tests have been conducted for the chosen tires in three modes: free rolling, braking, and traction using the Terramechanics Rig at TMVS at Virginia Tech. In this presentation we will only focus on the result for the traction tests. The…