Your Selections

Test facilities
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Antirodent Corrugated tube Development for Fuel tube Rat bite

Hyundai Motor India Engineering PVT LTD-GURUPACKIAM LAKSHMANARAJ
  • Technical Paper
  • 2019-28-2536
To be published on 2019-11-21 by SAE International in United States
Rat damages in automobiles/food crops/house hold things are extensive in India. Cases of Rat damages to Car Fuel tubes (plastic) and subsequent fuel leak problems are increasing in India.To protect the Fuel tube from rat bite , a more robust and easy assemble protection method is discussed. Hence Antirodent corrugated tubes are considered to protect fuel tube from rat bite. Antirodent masterbatch (3% ) were added to the corrugated tubes and lab test were done in CAZRI. Antirodent corrugated tubes tested with 2 different species showed better results compared to standard corrugated tubes
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Spring and damper tuning of an ATV to reducing transmissibility

ARAI Academy-Rajat Girish Kanade, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2401
To be published on 2019-11-21 by SAE International in United States
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability. The speculated optimum setting is validated on an all-terrain vehicle (ATV) using ultrasonic sensors and accelerometers, by varying vehicle speed and bump heights to evaluate the transmissibility of the suspension. The acquired data shows behaviour of the suspension and the influence of the main parameters in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

ARAI Academy-Rajat Girish Kanade, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2423
To be published on 2019-11-21 by SAE International in United States
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained. The speculated optimum setting is validated on the ATV vehicle with ultrasonic sensors and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

SRM Institute of Science and Technology-Nanthakumar Ajd, Pranav Suresh, Shubham Subhnil, Vasanthkumar CH
  • Technical Paper
  • 2019-28-2400
To be published on 2019-11-21 by SAE International in United States
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB. The static testing of the chassis is carried over using a Kinematic & Compliance (K & C) testing rig to get Compliance Budget and hence the calculated…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

Maruti Suzuki India Ltd-Naveen Malik, Sahil Jindal, Sayed Zergham Ali Naqvi
Maruti Suzuki India, Ltd.-Ayan Bhattacharya
  • Technical Paper
  • 2019-28-2404
To be published on 2019-11-21 by SAE International in United States
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure. Methodology was established to simulate proving ground loads on engine mount along with simulation of loads at wheel center using a 4 corner 6 DOF road load simulator. Result was verified by endurance run on test rig and matching the nature…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Baskar Anthonysamy, Krishna Shettipally, Manohar Kalal
  • Technical Paper
  • 2019-28-0021
To be published on 2019-10-11 by SAE International in United States
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation. A full vehicle model is prepared in ADAMS CAR and validated through Physical testing. The loads on suspension hard points extracted from the validated MBD model. These loads at various hardpoint locations, are used…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Damage Matching Criterion for Development of Accelerated Duty Cycle from Road Load Data, and Achieving Right Duty Cycle to Determine Gear and Bearing Durability

Romax Solutions-Amol Korde
  • Technical Paper
  • 2019-28-0121
To be published on 2019-10-11 by SAE International in United States
While designing the transmission, designer needs to have a duty cycle which is a set of load cases against which he wants to confirm the durability of the same. This is done through data acquisition by running a vehicle on various terrains and converting those data points to a concise set of load cases which we term as duty cycle. This concise set of load cases required because data acquired has millions of data points giving value of torque and RPM at every millisecond which cannot be directly used to assess the fatigue durability of gears and bearings. Converting these millions of road load data points into fewer number of load cases is always a challenge. For a transmission designer, it is being a major hurdle to determine as what is the scientific way of converting these millions of data points into a concise duty cycle. The road load data is taken for few hundred or few thousand kilometres covering enough types of terrains on which vehicle is expected to run. The methods available with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

Ford Motor Company-Wesley Bolognesi Prado, Silvia Faria Iombriller, Marco Andre Silva, Lázaro Renato Oliveira
Published 2019-09-15 by SAE International in United States
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand.Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel.On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior. However, for pneumatic brake systems, the pedal feel theoretical study is not usual, where is normally used for these developments, exclusively the subjective evaluation which become necessary to have more specialists to define the brake pedal behavior.Throughout this article will be revised the characteristics concepts…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optical Sensor for the Needle Lift Detection in the Common Rail Injector

The University of Birmingham, UK-Carlo Coratella, Lewis Parry, Amrit Sahu, Hongming Xu
Published 2019-09-09 by SAE International in United States
The detection of needle displacement within a Common Rail injector is a crucial step to suitably characterize the behaviour of an injector. The needle motion is traditionally measured by means of an eddy current sensor. Apart from its high cost, scientific literature highlights its drawbacks, such as the introduction of mechanical weakness on the control piston as well as the electromagnetic disturbance affecting data acquisition. In order to provide an improved quality of signal, other solutions have been developed, which require a large number of components, leading to increased layout complexity. This layout can create a packing issue while mounting the sensor on the test rig. A novel sensor (UK Patent Application No.1819731.9) using fibre optic cable has been designed and built to overcome the limitations typically associated with needle displacement transducers. Variations in light intensity, stemming from control piston displacement, underlie the working principle of the proposed sensor. The paper provides technical details and describes the experimental tests proving the sensor capability to detect injection events under various injection scenarios. The use of the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

General Motors-Salvatore Mafrici, Francesco Barba, Mauro Mattis
Published 2019-09-09 by SAE International in United States
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics).In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management.For this purpose, a combination of theoretical and experimental tools were used. The effects of oil pressure regulation, oil pump size and speed, oil temperature and viscosity have been thoroughly evaluated. Experiments were conducted both at component test rig for oil pump and at engine-vehicle test bench on a new common-rail light-duty Diesel…
This content contains downloadable datasets
Annotation ability available