Your Selections

Test facilities
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Antirodent Corrugated tube Development for Fuel tube Rat bite

Hyundai Motor India Engineering PVT LTD-GURUPACKIAM LAKSHMANARAJ
  • Technical Paper
  • 2019-28-2536
To be published on 2019-11-21 by SAE International in United States
Rat damages in automobiles/food crops/house hold things are extensive in India. Cases of Rat damages to Car Fuel tubes (plastic) and subsequent fuel leak problems are increasing in India.To protect the Fuel tube from rat bite , a more robust and easy assemble protection method is discussed. Hence Antirodent corrugated tubes are considered to protect fuel tube from rat bite. Antirodent masterbatch (3% ) were added to the corrugated tubes and lab test were done in CAZRI. Antirodent corrugated tubes tested with 2 different species showed better results compared to standard corrugated tubes
 

Spring and damper tuning of an ATV to reducing transmissibility

Rajat Girish Kanade
ARAI-Kamalkishore Vora
  • Technical Paper
  • 2019-28-2401
To be published on 2019-11-21 by SAE International in United States
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability. The speculated optimum setting is validated on an all-terrain vehicle (ATV) using ultrasonic sensors and accelerometers, by varying vehicle speed and bump heights to evaluate the transmissibility of the suspension. The acquired data shows behaviour of the suspension and the influence of the main parameters in…
 

Investigation of Transmissibility of an all-terrain vehicle with spring and damper tuning.

Rajat Girish Kanade
ARAI-Kamalkishore Vora
  • Technical Paper
  • 2019-28-2423
To be published on 2019-11-21 by SAE International in United States
The application in ride and handling development has been mostly subjective or intuitive. Suspension settings are based on the opinions of experts. The product of this research will enable to quantify the performance of a suspension in terms of its ability to minimize the transmission of road irregularities to the chassis and achieve good mechanical grip with the road surface. This work presents a dynamical analysis of the transmissibility of an off-road vehicle suspension, developed in VIT Vellore for Baja SAE India competition. A baseline spring rates curve for ride is developed to provide a solid foundation to tune from. The shock absorbers used for testing are Fox Float Evol R air shock absorbers with progressive damping. A thorough data acquisition of the force curves for shocks from a test rig is done. A detailed characteristic of the air shocks is obtained at various loading conditions. The basic damping curve is modified towards the desired ideal nature with the data obtained. The speculated optimum setting is validated on the ATV vehicle with ultrasonic sensors and…
 

Transient Response Analysis and Synthesis of an FSAE Vehicle using Cornering Compliance

SRM Institute Of Science And Technology-Vasanthkumar CH, Shubham Subhnil, Pranav Suresh, K Kamalakkannan
SRM Institute of Science & Technology-Nanthakumar Ajd
  • Technical Paper
  • 2019-28-2400
To be published on 2019-11-21 by SAE International in United States
OBJECTIVE Race vehicles are designed to achieve higher lateral acceleration arising at cornering conditions. A focused study on the steady state handling of the car is essential for the analysis of such conditions. The transient response analysis of the car is also equally important to achieve best driver-car relationship and to quantify handling in the range suitable for a racing car. This research aims to investigate the design parameters responsible for the transient characteristics and optimize those design parameters. This research work examines the time-based analysis of the problem to truly capture the non-linear dynamics. Apart from tires, chassis can be tuned to optimize vehicle handling and hence the response times. METHODOLOGY To start with, the system is modelled with governing parameters and simulation is carried out to set baseline configurations. Steady state and transient handling simulations run independent of each other with independent logic, coded on MATLAB. The static testing of the chassis is carried over using a Kinematic & Compliance (K & C) testing rig to get Compliance Budget and hence the calculated…
 

Methodology for failure simulation Using 4 corner 6 DOF Road load simulator of Overhanging Components: An Experimental Approach

Maruti Suzuki India Ltd-Naveen Malik, Sahil Jindal, Sayed Zergham Ali Naqvi
Maruti Suzuki India, Ltd.-Ayan Bhattacharya
  • Technical Paper
  • 2019-28-2404
To be published on 2019-11-21 by SAE International in United States
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. For generation of proper drive file, not only good FRF but ensuring stability of inverse FRF is also essential. Stability of the inverse FRF depends upon the simulation channels used. In this paper, an experimental approach was applied for focused failure simulation of engine mount, one of such low correlation zone, with known history of failure. Methodology was established to simulate proving ground loads on engine mount along with simulation of loads at wheel center using a 4 corner 6 DOF road load simulator. Result was verified by endurance run on test rig and matching the nature…
 

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

Ford Motor Company-Wesley Bolognesi Prado, Silvia Faria Iombriller, Marco Andre Silva, Lázaro Renato Oliveira
  • Technical Paper
  • 2019-01-2140
To be published on 2019-09-15 by SAE International in United States
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of whole system. Each OEM define during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature is possible to find some data and studies considering the hydraulic brakes behavior. However for pneumatic brake systems the pedal feel theoretical study is not usual where is normally used for this developments exclusively the subjective evaluation which become necessary to have more specialists to define the brake pedal behavior. Thru this article will be revised the characteristics…
 

Optical Sensor for the Needle Lift Detection in the Common Rail Injector

The University of Birmingham, UK-C Coratella, L. Parry, A. Sahu, H. Xu
  • Technical Paper
  • 2019-24-0193
To be published on 2019-09-09 by SAE International in United States
The displacement of the control piston within a Common Rail injector is a key area that requires more focus to suitably characterise the behavior of an injector, it is a key element to discuss when investigating in-nozzle phenomena, the needle displacement is typically measured with a eddy current sensor. Apart from its high cost, scientific literature highlights its drawbacks, such as the introduction of mechanical weakness on the control piston as well as an electromagnetic disturbance affecting the data acquisition. Other solutions have been developed which provide an improved quality of signal. Nonetheless, such solutions require a high number of components which leads to an increased layout complexity. This layout can create a packing issue when trying to mount the sensor on the test rig. A novel sensor (UK Patent Application No.1819731.9) has been designed and built to overcome the limitations typically associated to the needle displacement transducers. Variation in light intensity detected by a receiver underlies the working principle of the sensor and is in a direct relationship with the needle displacement. This paper…
 

Study of Friction Optimization Potential for Lubrication Circuits of Light-duty Diesel Engines

General Motors-Salvatore Mafrici, Francesco Barba, Mauro Mattis
  • Technical Paper
  • 2019-24-0056
To be published on 2019-09-09 by SAE International in United States
ABSTRACT Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used. In particular, the effects of oil pressure regulation, oil pump size and speed, oil temperature and viscosity have been thoroughly evaluated. Experiments were conducted both at component test rig for oil pump and at engine test bench on…
 

Imaging and Vibro-Acoustic Diagnostic Techniques Comparison for a GDI Fuel Injector

Istituto Motori CNR-Luigi Allocca, Daniela Siano, Alessandro Montanaro, Maria Antonietta Panza
  • Technical Paper
  • 2019-24-0058
To be published on 2019-09-09 by SAE International in United States
This work presents the results of an experimental investigation on a GDI injector, in order to analyze fuel injection process and atomization phenomenon, correlating imaging and vibro-acoustic diagnostic techniques. A single-hole, axially-disposed, 0.200 mm diameter GDI injector was used to spray commercial gasoline in a test chamber at room temperature and atmospheric backpressure. The explored injection pressures were ranged from 5.0 to 20.0 MPa. Cycle-resolved acquisitions of the spray evolution were acquired by a high-speed camera. Contemporarily, the vibro-acoustic response of the injector was evaluated. More in detail, noise data acquired by a microphone sensor were analyzed for characterizing the acoustic emission of the injection, while a spherical loudspeaker was used to excite the spray injection at a proper distance detecting possible fuel spray resonance phenomena. In order to monitor vibration throughout the injection event, the injector was also equipped with an accelerometer sensor, adhesively mounted on the holder. Tests in both dry and fuel injection conditions allowed to distinct the pure mechanical operation of the injector related to the needle opening and closing, and…
 

Driving Cycle and Elasticity Manoeuvre Simulation of a Small SUV Featuring an Electrically Boosted 1.0 L Gasoline Engine

Politecnico di Torino-Alessandro Zanelli, Federico Millo
Röchling Automotive-Marco Barbolini
  • Technical Paper
  • 2019-24-0070
To be published on 2019-09-09 by SAE International in United States
In order to meet the CO2 emission reduction targets, downsizing coupled with turbocharging has been proven as an effective way in reducing CO2 emissions while maintaining and improving vehicle driveability. As the downsizing becomes widely exploited, the increased boost levels entail the exploration of dual stage boosting systems. In a context of increasing electrification, the usage of electrified boosting systems can be effective in the improvement of vehicle performances. The aim of this work is therefore to evaluate, through numerical simulation, the impact of different voltage (12 V or 48 V) electric superchargers (eSC) on an extremely downsized 1.0L engine on vehicle performance and fuel consumption over different transient manoeuvres. The virtual test rig employed for the analysis integrates a 1D CFD Fast Running Model (FRM) engine representative of a 1.0L state-of-the-art gasoline engine featuring an eSC in series with the main turbocharger, an electric network (12 V or 48 V), a six speed manual transmission and a vehicle representative of a B-SUV segment car. A preliminary assessment of the steady state performances of the…