Your Selections

Steel
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) using Ring-Groove Die Comparing to Heat Treatment Method

Bollhoff Inc.-Xuzhe Zhao
Chang’an University-Dean Meng
  • Technical Paper
  • 2020-01-0222
To be published on 2020-04-14 by SAE International in United States
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry for the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of crack reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting. The SPR joint quality will be evaluated based on interlock distance, the minimum remaining thickness (Tmin), shear strength etc. Instead of using heat treatment method, the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Shape Optimization of Engine Block for Reducing Noise Radiation

ESI North America-Wenlong Yang, Ricardo de Alba Alvarez
  • Technical Paper
  • 2020-01-0404
To be published on 2020-04-14 by SAE International in United States
Reducing the noise radiated from engines has become important. Optimizing the shape of the engine block is one promising approach to achieve this goal. The objective of this paper is to perform the shape optimization of an engine block to reduce its radiated noise in a certain frequency range. Specifically investigated is a six-cylinder engine made of aluminum and steel. The investigation is performed by numerical models, which compose the finite elements for simulating the structure and boundary elements for simulating the exterior airspace. For optimization, a series of ribs are added on the surface of the engine block. The optimization variables are set up to represent the shapes of the ribs. The limits of the shape changes are defined by the optimization constraints. The radiated power and the sound pressure at certain locations are chosen as the optimization objectives. The Genetical Algorithm is taken to perform the optimization. It is found that the optimization calculation successfully converges and gives the best design. The radiated noise is reduced by certain amount. A Pareto plot with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating Under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

Argonne National Laboratory-Munidhar Biruduganti, Douglas Longman
Oak Ridge National Laboratory-Michael Kass, Brian Kaul, John Storey, Amelia Elliott, Derek Siddel
  • Technical Paper
  • 2020-01-0770
To be published on 2020-04-14 by SAE International in United States
The purpose of this study was to evaluate the durability and operational performance of a bimetallic (stainless steel and bronze) natural gas engine head. The performance was evaluated against a stock cast iron head for comparison. During manufacturing of the printed head, efforts were made to ensure that the internal features, including the fire deck geometry for the two head were identical. The engine was operated under two engine speeds (1200 rpm and 1800 rpm) and two Brake Mean Effective Pressures (6 bar and 10 bar). For each speed and BMEP combination, two equivalence ratios (0.7 and 1.0) were evaluated. In addition to emissions and engine performance data, the research team also took thermal images of both operating heads to ascertain heat transfer and thermal loss differences between the two head materials. The results showed that the brake efficiency, coolant and exhaust temperature were the same for both heads. However, unburned hydrocarbon emissions (methane) were higher, and the NOx emissions were lower for the printed head. Measurement of the compression ratio (CR) showed that the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of the powder metal shift fork and sleeve

Czech Technical University-Gabriela Achtenova, Jiri Pakosta
  • Technical Paper
  • 2020-01-1322
To be published on 2020-04-14 by SAE International in United States
The paper will present the design of shift fork for automotive manual gearbox dedicated for the manufacturing with help of powder metal technology. Based on limitations and requirements of new production technology of shifting sleeve, a new prototype of shifting sleeve is created, for which are new shifting forks then designed. The form of the prototype of the shift sleeve respected the requirements of the new technology, but from cost reason, it was manufactured from steel. The shift fork was changed accordingly to the new form of the shift sleeve. The functionality of several forks with different tolerances was tested. Prototypes were put through functional and durability tests on testing bench in real automotive gearbox. The test were accomplished on the inertia test stand. Drawings and CAD models of tested prototypes, custom tools and designed shift forks will be described.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

Ford Motor Company-Tau Tyan, Krishnakanth Aekbote
United States Steel Corporation-Guofei Chen, Lu Huang, Todd M. Link
  • Technical Paper
  • 2020-01-0198
To be published on 2020-04-14 by SAE International in United States
To accurately evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel with a superior combination of high strength and excellent ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states. The calibrated GISSMO fracture card for 780 XG3TM steel was then validated in simulations of wedge-bend tests, two notched tensile tests and axial crash tests of octagonal, 12-sided and 16-sided components. The predicted fracture locations, displacement at fracture and force-displacement curves agreed well with the test results. The study also demonstrates that 780…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Coupled Weld-Rupture Analysis of Automotive Assemblies

ESI North America-Yogendra Gooroochurn, Ramesh Dwarampudi, Vijay Tunga
ESI US R&D-Megha Seshadri, Ravi Raveendra
  • Technical Paper
  • 2020-01-1076
To be published on 2020-04-14 by SAE International in United States
Lightweight driven design in the automotive industry and the push for Electric Vehicles mandate the use of innovative materials such as Steel (HSS, UHSS, AHSS) and Aluminum alloys. For steel suppliers to meet the strength requirements of high strength steels, they often alloy the steel chemistry (depending on mill capability, rolling capacity, quenching capacity, etc.). When used in welded assembly constructions, these steels, as compared to traditional steels, behave differently. Depending on the welding heat input, the material chemistry and thickness, they either harden or soften in the heat affected zone. Similar behavior is observed with the most commonly used aluminum alloys (5000 and 6000 series) in the automotive sector. For both alloy types, different strengthening mechanism are used to meet their initial strength requirements (by work hardening and by heat treating respectively) but they both undergo softening in the heat affected zone during welding. Regardless of the alloys, the material in the heat affected zone is affected and so is the performance of the weldment during service. FE analyzes of Welding and Performance have…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Searching for Optimal Solutions for Motor Performance Design

Honda R&D Co.,Ltd.-Yuko Miyabe, Masahito Kakema, Toshihiro Saito
  • Technical Paper
  • 2020-01-0460
To be published on 2020-04-14 by SAE International in United States
Because strength and the torque/rotational speed characteristic play a considerable role in determining the maximum speed and the acceleration force of a vehicle, they have been taken up as optimization issues. By contrast, loss and torque ripple have not necessarily been focused on in the initial search for optimal solutions. They are both linked to efficiency, comfortability, and the cost of development of the cooling system and supporting structures, however, it is necessary to reduce both parameters. For this reason, it is important to search for the Pareto front for strength, the torque/rotational speed characteristic, loss, and torque ripple at the initial stage of design. The strength constraint was set that von Mises stress in the rotor core in relation to the centrifugal force load at maximum speed would not exceed the breaking strength of a standard electromagnetic steel sheet material. The torque/rotational speed characteristic employed the maximum torque for each rotational speed when maximum torque per ampere control and field weakening control are applied, with consideration of maximum input voltage and current. Maximum torque…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Volume of Fluid vs. Cavitation CFD-Models to Calculate Drag Torque in Multi-Plate Clutches

SIMERICS GmbH-Rudi Niedenthal
Technical University of Munich-Daniel Groetsch, Katharina Voelkel, Hermann Pflaum, Karsten Stahl
  • Technical Paper
  • 2020-01-0495
To be published on 2020-04-14 by SAE International in United States
Wet running multi-plate clutches and brakes are important components of modern powershift gearboxes and industrial powertrains. In the open stage, drag losses occur due to fluid shear. Identification of drag losses is possible by experiment or CFD-simulation. For calculation of the complex fluid flow of an open clutch CFD-approaches such as the Volume of Fluid (VoF) method or the Singhal cavitation model are applicable. Every method has its own specific characteristics. This contribution sets up CFD-calculation models for different clutches with diverse groove designs. We present results of calculations in various operating conditions obtained from the Singhal cavitation model and the VoF-method. Despite the high spatial resolution of the calculation models the usage of a modern commercial CFD-solver and mesher (Simerics MP+) results in very short calculation times. The developed CFD-models consider the geometry of a complete clearance consisting of the friction plate, the gap between the plates, the steel plate and the flow conditions arising from the design of the inner and outer plate carrier. The full 360-degree modeling makes it possible to take…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications

Arcanum Alloys Inc.-Zachary Detweiler, David Keifer, Daniel Bullard
Tenneco Inc.-Adam Kotrba, Tony Quan, Winston Wei
  • Technical Paper
  • 2020-01-1051
To be published on 2020-04-14 by SAE International in United States
A novel Spatially Optimized Diffusion Alloy (SODA) material has been developed and applied to exhaust systems, a very aggressive environment with high temperatures and loads, as well as excessive corrosion. Traditional stainless steels disperse chromium homogeneously throughout the material, with varying amounts ranging from 11% to 18% dependent upon its grade (e.g. 409, 436, 439, and 441). SODA steels, however, offer layered concentrations of chromium, enabling an increased amount along the outer surface for much needed corrosion resistance and aesthetics. This outer layer, approximately 70µm thick, exceeds 20% of chromium concentration locally, but is only 3% in bulk, offering selective placement of the chromium to minimize its overall usage. And, since this layer is metallurgically bonded, it cannot delaminate or separate from its core, enabling durable protection throughout manufacturing processes and full useful life. The core material may be of various grades, however, so this study employs interstitial free steel (low carbon), which offers not only commercial advantages, but also eases manufacturing operations, as it is more formable than stainless steel grades. The material and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ultralight axle development-fracture mechanics life predictions (40% weight reduction).

Magna Drivetrain of America Inc.-Michael Bujold
  • Technical Paper
  • 2020-01-0179
To be published on 2020-04-14 by SAE International in United States
This paper details the light weight developments with the use of fracture mechanics technology. Forty percent weight reduction was achieved in an automotive axle. Novel pinion cartridge, ring gear , and differential designs were incorporated in this project to achieve weight, efficiency, noise and performance targets. A fracture mechanics (crack growth model) was used to determine steel cleanliness levels required as component size was optimized based on processing variables(steel material properties, initial flaw size, residual stress, duty cycle analysis,...). Prototype hypoid gear samples made from two variations of steel cleanliness were used to qualify the crack growth models with and without the addition of shot peening to vary the residual stress profiles for life requirements. Housing material variations of aluminum and magnesium were used for additional weight reduction in this program.