Your Selections

Statistical analysis
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of pressure variation in wheel with the aid of wheel speed sensor

College of Engineering-Pune-Ravindra Dattatray Marwadi, Rajiv Basavarajappa
HELLA India Automotive Pvt Ltd.-Abhishek Mandhana
  • Technical Paper
  • 2019-28-2450
Published 2019-11-21 by SAE International in United States
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions. The data obtained from the wheel speed sensor is analyzed through statistical methods and different determining values are calculated. These determining parameters are compared to see the variations in the pressure. To obtain…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

Mahindra & Mahindra, Ltd.-Divyanshu Joshi, Saravanan Muthiah
Mahindra Research Valley-Shubham Kedia
  • Technical Paper
  • 2019-28-2397
Published 2019-11-21 by SAE International in United States
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. In the current work, a GUI based post-processing tool is developed for automated evaluation of ride, handling and steering performance. Methodology This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics from testing and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

STATISTICAL ANALYSIS OF LOW CYCLE FATIGUE PROPERTIES IN METALS FOR ROBUST DESIGN

General Motors Global Technical Center-Abolhassan Khosrovaneh
General Motors Technical Center India-Karthigan Ganesan, Biswajit Tripathy
  • Technical Paper
  • 2019-28-2576
Published 2019-11-21 by SAE International in United States
Objective: In ground vehicle industry, strain life approach is commonly used for predicting fatigue life. This approach requires use of fatigue material properties such as fatigue strength coefficient (σf'), fatigue strength exponent (b), fatigue ductility coefficient (εf'), fatigue ductility exponent (c), cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′). These properties are obtained from stable hysteresis loop of constant amplitude strain-controlled uniaxial fatigue tests. Usually fatigue material properties represent 50th percentile experimental data and doesn't account possible material variation in the fatigue life calculation. However, for robust design of vehicle components, variation in material properties need to be taken into account. In this paper, methodology to develop 5th percentile (B5), 10th percentile (B10) and 20th percentile (B20) fatigue material properties are discussed. Possible material variation in fatigue life prediction is included as B5, B10 and B20 fatigue material properties. Methodology: Fatigue strength coefficient (σf') and fatigue strength exponent (b) are obtained by performing a linear regression on true stress amplitude (∆σ/2) versus reversals to failure (2Nf) in log-log scale. Fatigue ductility coefficient (εf')…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Research on Control Algorithm of Active Steering Control Based on the Driver Intention

Jilin University-Pengcheng Zhang, Hongyu Zheng
Published 2019-11-04 by SAE International in United States
Active steering technology can improve the operability of the driver by the involvement to the steering system. Driver is the major controller of the vehicle Therefore, the involvement of advanced technologies including the active steering technology shouldn’t interfere with the intention of the driver, and the driver should still have great control of the vehicle. The aim of this paper is to solve the problem of the driver’s control when the active steering system works to improve the flexibility of the low speed and the stability of the high speed, and the active steering model based on the driver’s steering intention is established. Through the CarSim simulation software, this paper adopts 9 parameters related to the vehicle steering of the DLC (Double Line Change). And PCA (Principal Component Analysis) algorithm, a tool of statistical analysis, is applied to select 4 parameters which can stand for the DLC from the 9 parameters, which makes the data processing easier. Through the 4 parameters, this model divide the driver’s steering intention into four categories (emergency steering, normal steering,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

Tongji University-Jiarui Zhang, Zhixiong Ma, Xichan Zhu
Published 2019-11-04 by SAE International in United States
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%. According to this, we choose to further research the behavior of keeping lane, and analyze the influencing factors of braking response. Statistical methods, such as Chi-square test, Spearman correlation test, are used…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Lane Line Detection by LiDAR Intensity Value Interpolation

Kettering University-Viktor Ciroski, Jungme Park
Published 2019-10-22 by SAE International in United States
Lane marks are an important aspect for autonomous driving. Autonomous vehicles rely on lane mark information to determine a safe and legal path to drive. In this paper an approach to estimate lane lines on straight or slightly curved roads using a LiDAR unit for autonomous vehicles is presented. By comparing the difference in elevation of LiDAR channels, a drivable region is defined. The presented approach used in this paper differs from previous LiDAR lane line detection methods by reducing the drivable region from three to two dimensions exploring only the x-y trace. In addition, potential lane markings are extracted by filtering a range of intensity values as opposed to the traditional approach of comparing neighboring intensity values. Further, by calculating the standard deviation of the potential lane markings in the y-axis, the data can be further refined to specific points of interest. By applying a statistical approximation, to these points of interest, the results given show a linear approximation of the lane lines.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
Published 2019-10-11 by SAE International in United States
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function. The design variables are machining parameters (speed, feed), nanofluids (Al2O3, CNT, CUO), and three different weight percentage (0.1, 0.25, and 0.5 wt. %). The results showed that minimum values of surface roughness could be achieved at 0.10 wt. % of nanoparticles, CNT…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fault Detection in Single Stage Helical Planetary Gearbox Using Artificial Neural Networks (ANN) and Decision Tree with Histogram Features

BSACIST-Syed Shaul Hameed, Muralidharan Vaithiyanathan, Mahendran Kesavan
Published 2019-10-11 by SAE International in United States
Drive train failures are most common in wind turbines. Lots of effort has been made to improve the reliability of the gearbox but the truth is that these efforts do not provide a lifetime solution. Majority of failures are caused by bearing and gearbox. It also states that wind turbine gearbox failure causes the highest downtime as the repair has to be done at Original Equipment Manufacturer [OEM]. This work aims to predict the failures in planetary gearbox using fault diagnosis technique and machine learning algorithms. In the proposed method the failing parts of the planetary gearbox are monitored with the help of accelerometer sensor mounted on the planetary gearbox casing which will record the vibrations. A prototype has been fabricated as a miniature of single stage planetary gearbox. The vibrations of the healthy gearbox, sun defect, planet defect and ring defect under loaded conditions are obtained. The signals show the performance characteristics of the gearbox condition. These characteristics and their number of occurrences were plotted in a histogram graph. Predominant statistical features which represent…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
Published 2019-10-11 by SAE International in United States
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics. From the optimization analysis, 0.25% nCNT NFs along with a cutting speed of 40 m/min and 0.17 mm/rev feed rate has proved the better machining…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Ride Index Structure and Development Methodology

Vehicle Dynamics Standards Committee
  • Ground Vehicle Standard
  • J2834_201910
  • Current
Published 2019-10-09 by SAE International in United States
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver. This recommended practice offers a method for developing a ride performance index but does not specifically describe how to apply this index to assessment or comparison of specific vehicles.
This content contains downloadable datasets
Annotation ability available