Your Selections

Spoilers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design of Light Weight Spoiler for Efficient Aerodynamic Performance of a Vehicle

Mahindra & Mahindra, Ltd.-Praveen Kumar, Aditya Pandey, Vivek KV Shenoy, BalaChandar R, Ayan Chakraborty
Published 2019-10-11 by SAE International in United States
The spoiler is functional as well as aesthetic part fitted on the vehicles to improve the vehicle aerodynamic performance and better aesthetic appeal. The improvement of aerodynamics performance of the vehicle at higher speeds is achieved by reducing the overall vehicle coefficient of drag. This helps in better handling and improved fuel efficiency of the vehicle thus contributing to development of greener vehicle.In this project, our main focus is to reduce overall vehicle coefficient of drag, Design a light weight spoiler and improve the vehicle aesthetic appearance.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study for Manufacturing a Cost Effective, Light Weight, Single Piece Injection Molded Spoiler

Maruti Suzuki India Ltd.-Tarun Gupta, Nilesh Rathod
Published 2019-01-09 by SAE International in United States
Today automotive sector has become very dynamic. There is renewed emphasis on safety through adoption of new regulations, electric vehicles are on the verge of replacing ever evolving engine technology, emission norms are getting stringent year by year & several companies are trying to make vehicles more efficient by adoption of new light weight or high strength materials and altering manufacturing methods.In one of the new vehicle programs, there was focus on vehicle styling. In order to improve the styling, back door spoiler was to be considered from design stage itself.Back door spoiler is added in high speed vehicles for creating a downward force to improve the vehicle hold on road. However, nowadays in passenger vehicles that purpose has been subsided and spoiler is given in automotive vehicles for aesthetics or giving vehicle a sporty appearance. For instance in our case it was given to augment aesthetics.This would have resulted in additional cost and weight. Hence, challenge was to introduce it in minimal cost and weight and still it should pass all performance criteria.Each and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool

Tata Motors, Ltd.-Kundan Biswas, Ganesh Gadekar, Sujit Chalipat
Published 2019-01-09 by SAE International in United States
Vehicle aerodynamic design has a critical impact on fuel efficiency of the vehicle. Reducing aerodynamic wind resistance of the vehicle's exterior shape and reducing losses associated with requirements for engine compartment cooling through vehicle front openings plays key role in achieving desired aerodynamic efficiency.Today fairly large number of computational fluid dynamics (CFD) simulations are being performed during the vehicle aerodynamic design and development process and it is rapidly increasing day by day. Vehicle aerodynamic design and development process involves mainly aerodynamic shape development, aerodynamic optimizations of vehicle external components (side view mirror, spoilers, underbody shield etc.) and number of” what if studies during preliminary design process.Licensing costs of the available commercial CFD simulation solver has significant impact on product development cost when numbers of aerodynamic simulations expand. To address this aspects, open source code “OpenFoam” CFD have become popular in the aerodynamic community.This papers summarizes CFD simulation results for three standard MIRA body configurations (Notchback, Fastback and Estate back) using OpenFoam solver. In this study, steady state simulations with Realizable K-epsilon turbulence models were performed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

SAE International Journal of Passenger Cars - Mechanical Systems

Ford Motor Company-Levon Larson, Sudesh Woodiga
  • Journal Article
  • 2018-01-0740
Published 2018-04-03 by SAE International in United States
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag. The difference in drag between the AGS vanes being open and closed is referred to as AGS drag. Another vehicle component that influences the cooling drag is chin spoilers. Chin…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

Nissan Motor Co., Ltd.-Yusuke Iinuma, Keiichi Taniguchi, Munehiko Oshima
Published 2018-04-03 by SAE International in United States
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model. A wind tunnel with a 0 degree yaw angle is generally used in new vehicle development, but this condition is different from the real world with a small yaw angle due to natural crosswinds. The new EV…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On the Aerodynamics of an Enclosed-Wheel Racing Car: An Assessment and Proposal of Add-On Devices for a Fourth, High-Performance Configuration of the DrivAer Model

Cranfield University-Renan Francisco Soares, Andrew Knowles, Sergio Goñalons Olives, Kevin Garry, Jennifer Holt
Published 2018-04-03 by SAE International in United States
A modern benchmark for passenger cars - DrivAer model - has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for high-performance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes.In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser. The simplified design of these add-ons focuses on the main parameters (such as length, position, or incidence), leading to easier manufacturing for experiments and implementation in computational studies. Consequently, a proposed model aims to address enclosed-wheel racing car categories, adapting a simplified, 35% scaled-model DrivAer Fastback shape (i.e. smooth underbody, no wheels, and with side mirrors).Experimental data were obtained…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-End

Eric Song, Philippe Petit, Jerome Uriot, Pascal Potier
CEESAR-Denis Dubois
Published 2017-11-13 by The Stapp Association in United States
This study aims to provide a set of reference post-mortem human subject tests which can be used, with easily reproducible test conditions, for developing and/or validating pedestrian dummies and computational human body models against a road vehicle. An adjustable generic buck was first developed to represent vehicle front-ends. It was composed of four components: two steel cylindrical tubes screwed on rigid supports in V-form represent the bumper and spoiler respectively, a quarter of a steel cylindrical tube represents the bonnet leading edge, and a steel plate represents the bonnet. These components were positioned differently to represent three types of vehicle profile: a sedan, a SUV and a van. Eleven post-mortem human subjects were then impacted laterally in a mid-gait stance by the bucks at 40 km/h: three tests with the sedan, five with the SUV, and three with the van. Kinematics of the subjects were recorded via high speed videos, impact forces between the subjects and the bucks were measured via load cells behind each tube, femur and tibia deformation and fractures were monitored via…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Structural Concept of an Adaptive Shock Control Bump Spoiler

DLR German Aerospace Center-Markus Kintscher, Hans Peter Monner
Published 2017-09-19 by SAE International in United States
Drag reduction technologies in aircraft design are the key enabler for reducing emissions and for sustainable growth of commercial aviation. Laminar wing technologies promise a significant benefit by drag reduction and are therefore under investigation in various European projects. However, of the established moveable concepts and high-lift systems, thus far most do not cope with the requirements for natural laminar flow wings. To this aim new leading edge high-lift systems have been the focus of research activities in the last five years. Such leading edge devices investigated in projects include a laminar flow-compatible Kruger flap [1] and the Droop Nose concept [2, 3] and these can be considered as alternatives to the conventional slat. Hybrid laminar flow concepts are also under investigation at several research institutes in Europe [4]. Another challenge associated with laminar wings aside from the development of leading edge moveables is the need to address the control of aerodynamic shocks and buffeting as laminar wings are sensitive to high flow speeds. One possible method of decreasing the wave drag caused by the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Extensive Validation of an Open Source Based Solution for Automobile External Aerodynamics

Ford Motor Company-Robert Lietz, Levon Larson, Peter Bachant, John Goldstein, Rafael Silveira, Mehrdad Shademan
ICON Technology and Process Consulting-Pete Ireland, Kyle Mooney
Published 2017-03-28 by SAE International in United States
The number of computational fluid dynamics (CFD) simulations performed during the vehicle aerodynamic development process continues to expand at a rapid rate. One key contributor to this trend is the number of analytically based designed experiments performed to support vehicle aerodynamic shape development. A second contributor is the number of aerodynamic optimization studies performed for vehicle exterior components such as mirrors, underbody shields, spoilers, etc. A third contributor is the increasing number of “what if” exploratory studies performed early in the design process when the design is relatively fluid. Licensing costs for commercial CFD solutions can become a significant constraint as the number of simulations expands. A number of alternative products (e.g., independently developed, supported and documented forks of the popular open-source OpenFOAM® toolbox [1]) have become available in recent years, offering a lower cost alternative to traditional commercial CFD products. This paper summarizes results from a broad and deep evaluation of the capability of iconCFD® to substitute for the more traditional commercial CFD solutions currently used to support vehicle aerodynamic development early in the…
This content contains downloadable datasets
Annotation ability available

Jet Engine Exhaust Nozzle Flow Effector

  • Magazine Article
  • TBMG-25508
Published 2016-10-01 by Tech Briefs Media Group in United States

NASA’s Langley Research Center has created novel flow effector technology for separation control and enhanced mixing. The technology allows for variable shape control of aircraft structure through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector deflects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and flight control. NASA developed the active flow effectors for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions, and cannot be retracted for off-design or failsafe conditions.