Your Selections

Spark ignition engines
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Dedicated Lubricant for Hydrogen Fueled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corporation Limited-Sauhard Singh, Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
To be published on 2019-11-21 by SAE International in United States
Hydrogen has low ignition energy ensures easy ignition of the ultra-lean mixture of H2+air also. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant volume which enhances the thermal efficiency of hydrogen fuelled IC engine. High octane number of hydrogen makes it suitable for its application in Spark ignition (SI) engines. Since the hydrogen combustion in spark ignition engine generates water which can interfere with the lubricant performance, different lubricant is to be developed for this purpose. In this background, the present work is aimed at the development of dedicated lubricant for hydrogen fuelled SI engine. This paper presents the various parameters required for evaluating different lubricants for hydrogen fuelled genset. Existing CNG genset has been converted into hydrogen genset with modification in intake manifold assembly, engine hardware system, ECU modification with adequate modification in exhaust system. State of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A mathematical expression to predict the influence of ethanol concentration on distillation behavior of gasoline-ethanol fuel blend and impact of non -ionic surfactant on E20 fuel

Bharat Petroleum Corp., Ltd.-Siddhartha Mitra, Rajendiran Adimoolam, Kashinath Sutar, Debashis Ganguli
  • Technical Paper
  • 2019-28-2386
To be published on 2019-11-21 by SAE International in United States
Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 700C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend. A linear equation is established from the distillation data to predict the impact of % ethanol on % volume recovery and maximum temperature drop in distillation test of gasoline-ethanol fuel blends. Addition of non-ionic surfactant in ethanol blended gasoline (E20) reduces the azeotrope behaviour significantly and flattens the distillation curve. E70, vapour lock index (VLI),…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Integrated Engine States Estimation Using Extended Kalman Filter and Disturbance Observer

Clemson University-Qilun Zhu, Robert Prucka
  • Technical Paper
  • 2019-01-2603
Published 2019-10-22 by SAE International in United States
Accurate estimation of engine state(s) is vital for engine control systems to achieve their designated objectives. The fusion of sensors can significantly improve the estimation results in terms of accuracy and precision. This paper investigates using an Extended Kalman Filter (EKF) to estimate engine state(s) for Spark Ignited (SI) engines with the external EGR system. The EKF combines air path sensors with cylinder pressure feedback through a control-oriented engine cycle domain model. The model integrates air path dynamics, torque generation, exhaust gas temperature, and residual gas mass. The EKF generates a cycle-based estimation of engine state(s) for model-based control algorithms, which is not the focus of this paper. The sensor and noise dynamics are analyzed and integrated into the EKF formulation. To account for ‘non-white’ disturbances including modeling errors and sensor/actuator offset, the EKF engine state(s) observer is augmented with disturbance state(s) estimation. Case studies demonstrate that the disturbance augmented EKF can identify the sources of estimation errors and mitigates these errors automatically within several engine cycles. This paper concludes that the number of disturbance…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Enhancement of Performance and Emission Characteristics of SI Engine Using Multi Ground Spark Plug with Alcohol Fuel Blends

VNR VJIET-Raju Tappa, Amjad Shaik, Raghav Gopal Rao, Srinivasa Rao Talluri
Published 2019-10-11 by SAE International in United States
Limited fossil fuel reserves, steadily rising prices, incremental vehicle population and increased environmental concerns have sparked a need to evaluate alternate fuels for internal combustion engine vehicles. Alcohol fuels with high oxygen content and higher octane number become an attractive option for spark ignition (SI) engines. In practice, there are so many techniques to improve the engine performance and emission characteristics with alcohol and gasoline fuel blends. However, continuous operation of single ground electrode causes erosion of electrodes that loosens its ignitability which intern leads to higher emissions and reduced performance. Hence, there is a need to explore the influence of spark plug design for further improvement in engine performance and emission reduction. This paper provides an insight on the effect of potential alternative fuels like methanol blends and their influence on the performance and emission characteristics of a SI engine using a multi ground electrode spark plug. An experimental investigation on SI engine using various methanol blends like M10 (, M 10 fuel blend consisted of 10% methanol, 87% gasoline and 3% 2T oil),…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Neural Network Based Virtual Sensor for Throttle Valve Position Estimation in a SI Engine

SITAMS-Chellappan Kavitha
VIT University-Bragadeshwaran Ashok, Sathiaseelan Denis Ashok, Chidambaram Ramesh Kumar
Published 2019-10-11 by SAE International in United States
Electronic throttle body (ETB) is commonly employed in an intake manifold of a spark ignition engine to vary the airflow quantity by adjusting the throttle valve in it. The actual position of the throttle valve is measured by means of a dual throttle position sensor (TPS) and the signal is feedback into the control unit for accomplishing the closed loop control in order handle the nonlinearities due to friction, limp-home position, aging, parameter variations. This work aims presents a neural networks based novel virtual sensor for the estimation of throttle valve position in the electronic throttle body. Proposed neural network model estimates the actual throttle position using three inputs such as reference throttle angle, angular error and the motor current. In the present work, the dynamic model of the electronic throttle body is used to calculate the current consumed by the motor for corresponding throttle valve movement. Proposed virtual sensor is tested for the sinusoidal and random driving cycle throttle angle input using a Bosch DVE5 electronic throttle body. Estimated throttle valve angle using the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Contribution to Improving the Thermal Management of Powertrain Systems

Università della Calabria, Italy-Teresa Castiglione, Diego Perrone, Angelo Algieri, Sergio Bova
  • Journal Article
  • 03-13-01-0003
Published 2019-10-08 by SAE International in United States
This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine - A CFD Analysis

Indian Institute of Technology Madras, India-Ankit Ashokrao Raut, J.M. Mallikarjuna
  • Journal Article
  • 03-13-01-0002
Published 2019-10-08 by SAE International in United States
Higher water evaporation and proper water vapor distribution in the cylinder are very vital for improving emission and performance characteristics of water-injected engines. The concentration of water vapor should be higher and uniform near the walls of the combustion chamber and nil at the spark plug location. In direct water-injected engines, water evaporation, vapor distribution, and spray impingement are highly dependent on injector parameters, viz., water injector orientation (WIO), location, and spray angle. Therefore, in this article, a computational fluid dynamics (CFD) investigation is conducted to study the effects of water injector spray angle (WISA), and WIO on the water evaporation, emission, and performance characteristics of a four-stroke, wall-guided gasoline direct injection (GDI) engine. The WISA is varied from 10° to 35°, whereas the WIO is varied from 15° to 35° in steps of 5°. The water is injected in the compression stroke with an optimum injection pressure of 50 bar. Water-to-fuel (W/F) ratio and spark timing are fixed at their optimum values with a compression ratio (CR) of 13.5. The engine is operated at…
This content contains downloadable datasets
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

Istituto Motori CNR-Paolo Sementa, Francesco Catapano, Silvana Di Iorio, Bianca Maria Vaglieco
Published 2019-10-07 by SAE International in United States
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction.The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber.It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm. Stoichiometric and lean conditions at full load were considered in all tests. The results were compared with those obtained with the engine equipped with the standard spark plug. The results indicated that both performance and emissions were…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

Istituto Motori CNR-Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
Published 2019-10-07 by SAE International in United States
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed.In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered. Moreover, knock intensity has been evaluated by means of two common indexes. High speed imaging has been carried out in the combustion chamber of a high performance DISI engine provided with an optical window in…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

How to Improve SI Engine Performances by Means of Supercritical Water Injection

University of Basilicata – Potenza 85100-Antonio Cantiani, Annarita Viggiano, Vinicio Magi
Published 2019-10-07 by SAE International in United States
The efficiency of ICEs is strongly affected by exhaust gases and engine cooling system heat losses, which account for about 50% of the heat released by combustion. A promising approach is to transfer this exhaust heat to a fluid, like water, and inject it into the combustion chamber under supercritical conditions. In such a way, the recovered energy is partially converted into mechanical work, improving both engine efficiency and performance.A quasi-dimensional model has been implemented to simulate an SI engine with supercritical water injection. Specifically, a spark ignition ICE, four-stroke with Port Fuel Injection (PFI) has been considered. The model accounts for gas species properties, includes valves opening/closing, wall heat transfer, a water injection model and a combustion model. The influence of some injection parameters, i.e. Water/Fuel ratio (W/F), Start Of water Injection (SOI) and Water Injection Duration (WID), on engine performances and efficiency is discussed in details.The results show that an increase of W/F ratio has the strongest impact on the performances with respect to SOI and WID, i.e. higher W/F ratio, SOI closer…
This content contains downloadable datasets
Annotation ability available