Your Selections

Simulators
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Methodology for Monitoring Real-World CO2 Emissions Compliance in Passenger Vehicles

Aristotle University of Thessaloniki-Nikiforos Zacharof, Stylianos Doulgeris, Ioannis Myrsinias, Zisimos Toumasatos, Athanasios Dimaratos, Zissis Samaras
European Commission Joint Research-Georgios Fontaras
  • Technical Paper
  • 2020-37-0034
To be published on 2020-06-23 by SAE International in United States
The road transport CO2 emissions reduction scheme in the European Union foresees mandatory targets for passenger vehicles. However, several studies have shown that there is a divergence between official and real-world values that it could be up to 40% in the NEDC. The introduction of the WLTP was expected to curb this divergence, but it is uncertain whether it can fully address the problem. In order to address this issue, future legislation aims at monitoring on-road fuel consumption and subsequently CO2 emissions by utilizing on-board fuel consumption meters. The current study investigates a monitoring approach that obtains and normalizes on-road vehicle operation data and estimate CO2 emissions through vehicle simulation. The first step is to create the vehicle’s engine fuel consumption map, based on laboratory vehicle measurements in order to use it as reference data. Subsequently, a methodology is developed to produce the vehicle’s engine map from signals retrieved through the OBD port in order to emulate data availability under a monitoring scheme. The methodology to derive the vehicle’s engine fuel consumption map includes an…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation of Driving Cycles by Means of a Co-Simulation Framework for the Prediction of IC Engine Tailpipe Emissions

Exothermia SA-Vasileios Tziolas, Nikolaos Zingopis
Politecnico di Milano-Gianluca Montenegro, Angelo Onorati, Gianluca D'Errico, Tarcisio Cerri, Andrea Marinoni
  • Technical Paper
  • 2020-37-0011
To be published on 2020-06-23 by SAE International in United States
The current European legislation concerning pollutant emissions from IC engine vehicles is very stringent and demanding. In addition, the CO2 fleet emission must obey to a significant reduction path during the next decade, to cope with the prescribed targets recently agreed. The prediction of pollutant emissions from IC engines has been a challenge since the introduction of the emission regulation legislation. During the last decade, along with the more tightening limits and increased public concern about air quality, the capability of simulating different operating conditions and driving cycles with an acceptable computational effort has become a key feature for modern simulation codes. The role of 1D thermo-fluid dynamic simulation models is extremely important to achieve this task, in order to investigate the performances of the next generation of IC engines working over a wide range of operating conditions, under steady-state and transient conditions. This work is based on the idea of integrating two different 1D simulation tools in a co-simulation environment, realizing a strict numerical coupling between the two codes. The main goal is to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CAE Support to Vehicle Audio Installation Issues

Volvo Car Corporation-Andrzej Pietrzyk
  • Technical Paper
  • 2020-01-1575
To be published on 2020-06-03 by SAE International in United States
Audio CAE is an emerging area of interest for a vehicle OEM, despite the fact that the development of the audio system is often left to a specialized supplier. Especially the questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The long term goal is to enable performing subjective evaluation of sound in a virtual car, and integrating audio evaluation in the NVH simulator. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Real-Time Capable Wind and Rolling Noise Synthesis for a More Realistic Vehicle Simulator Experience

Institute of Electronic Music & Acoustic-Julian Koch, Alois Sontacchi
MAGNA STEYR Fahrzeugtechnik AG & CO KG-Thorsten Bartosch, Werner Reinalter
  • Technical Paper
  • 2020-01-1546
To be published on 2020-06-03 by SAE International in United States
Nowadays a large proportion of the overall acoustic vehicle development takes place within virtual phases. Increasingly, projects require the auralization of virtual developed acoustics measures, e.g. from the disciplines of electro-acoustic, ride comfort, rolling noise or passive acoustic on dynamic or static driving simulators. In practice it turns out that in addition to engine noise also a realistic reproduction of rolling and wind noise is important. In this article, approaches to synthetic rolling and wind noise generators are discussed. We developed such real-time capable sound generators that are parametrizable according to arbitrary driving conditions. Furthermore, spacial reproduction of the driving sounds is achieved for binaural headphone, as well as for other arbitrary loudspeaker setups, like often found in driving simulators. Derived models and parametrization are based on measurements and recordings from several real vehicles. In order to facilitate the adjustment on specific vehicles and designing rolls thereof, the suggested parametrization is guided by a defined procedure. The influence of these noise components on an improved perception of the overall driving experience is objectified by means…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Squeak&Rattle - New Equivalent Static Load (ESL) based on Dynamic Distortion in all Body Openings from both Test and Simulation

AFRY-Viktor Jönsson
CEVT China Euro Vehicle Technology-Jens Weber, Mohamed Zaben
  • Technical Paper
  • 2020-01-1556
To be published on 2020-06-03 by SAE International in United States
The body stiffness has a major impact on the Squeak&Rattle (S&R) performance of a car. Since the body structure of electrical/automated cars will differ clearly from traditional bodies, an enhanced requirement is needed to limit the distortion in the closure openings. The new requirement can be derived from a complete vehicle simulation using the deformation of the diagonals in the closure openings. This simulation includes different test tracks by using the dynamic road load data which can be obtained from a multi body simulation of a complete vehicle. Since the requirement needs to be applied early in the development only an untrimmed body model (BIG) is available, which can be used for a simplified static load. This paper shows a new approach of defining an equivalent static load (ESL), which considers both the reduction from a complete vehicle to a BIG and from a dynamic load to a static load. The approach is based on the comparison of the deformation in the diagonals of all closure openings between the dynamic simulation of a complete trimmed…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of Squeak and Rattle Noise of a Car Seat Using 3D Sound Intensity Measurements

CTAG-Damian Gonzalez
Microflown Technologies-Daniel Fernandez Comesana, Tales Storani, Fanyu Meng PhD
  • Technical Paper
  • 2020-01-1557
To be published on 2020-06-03 by SAE International in United States
Assessment of squeak and rattle noise of a car seat using 3D sound intensity measurements Squeak and Rattle (S&R) noises are transient sound events occurring when adjacent parts come into contact, either impacting or sliding. All components and sub-systems integrated in a vehicle may produce noise when excited with certain vibro-acoustic load. S&R noise can be linked to the perceived build quality, durability and even discomfort or annoyance. As a result, car manufacturers have strict regulations to prevent noise issues. Current vibro-acoustic validation tests can vary in complexity from full vehicle simulation to component level tests. Additionally, subjective assessments are often required to locate problematic areas and quantify their relevance. In this paper, S&R noise of a car seat is investigated using 3D sound intensity measurements. A multi-axial shaker is used to drive the seat with a short time-stationary excitation extracted from a road profile. Results show that both active and reactive intensity are very effective for assessing S&R problems. Furthermore, a methodology is proposed to localize the elements that produce a significant acoustic excitation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

IC engine internal cooling system modelling using 1D-CFD methodology

FCA Engineering India Pvt., Ltd.-Dhananjay Sampat Autade, Amit Kumar, Tharunnarayanan Arthanari, Vaibhav Patil, Kamalakannan J
FCA US LLC-Fu-Long Chang
  • Technical Paper
  • 2020-01-1168
To be published on 2020-04-14 by SAE International in United States
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat. The objective of this study is to build a steady state 1D-model of cooling system; comprising of water pump, cooling jacket, engine head, thermostat, radiator, cabin heater, engine and transmission oil heaters with plumbing system. This 1D model is used to simulate vehicle drive…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Efficient Maneuvering of Connected and Automated Vehicles

Southwest Research Institute-Sankar Rengarajan, Scott Hotz, Jayant Sarlashkar, Stanislav Gankov, Piyush Bhagdikar, Michael C. Gross, Charles Hirsch
  • Technical Paper
  • 2020-01-0583
To be published on 2020-04-14 by SAE International in United States
Onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies will allow a vehicle to "know" its future operating conditions with some degree of certainty, greatly narrowing prior information gaps. The increased development of such Connected and Automated Vehicle (CAV) systems, currently used mostly for safety and driver convenience, presents new opportunities to improve the energy efficiency of individual vehicles. The NEXTCAR program is one such initiative by the Advanced Research Projects Agency – Energy (ARPA-E) to developed advanced vehicle dynamics and powertrain control technologies that leverage such connected information streams. Southwest Research Institute (SwRI) in collaboration with Toyota and University of Michigan is currently working on improving energy consumption of a Toyota Prius Prime 2017 by 20%. This paper provides an overview of the various algorithms that have been developed to achieve the energy consumption target. A breakdown of how individual algorithms contribute to the overall target is presented. The team built a specialized test-bed called CAV dynamometer that integrates a traffic simulator and a hub dynamometer for testing the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of the Effect of Tire Deformation on Open-Wheel Aerodynamics

Graz University of Technology-Philipp Eder, Cornelia Lex
U.A.S. Graz-Thomas Gerstorfer, Thomas Amhofer
  • Technical Paper
  • 2020-01-0546
To be published on 2020-04-14 by SAE International in United States
This paper introduces a finite element (FE) approach to determine tire deformation and its effect on open-wheeled racecar aerodynamics. In recent literature the tire deformation was measured optically using cameras during wind tunnel testing. Combined loads like accelerat-ing at corner exit are difficult to reproduce in wind tunnels and would require several camer-as to measure the tire deformation. In contrast, an FE approach is capable of determining the tire deformation in combined load states accurately and additionally provides the possibility to vary further parameters, for example, the coefficient of friction. The FE tire model was validated using stiffness measurements, contact patch measurements and steady-state cornering measurements on a flat belt tire test rig. The deformed shape of the FE model was used in a computational fluid dynamics (CFD) simulation. A sensitivity study was created to determine the effect of the tire deformation on aerodynamics for un-loaded, purely vertically loaded and combined vertical, lateral and longitudinal forces. In addition, the influence of these three tire deformations was investigated in a CFD study using a full vehicle…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

Southwest Research Institute-Robert Henderson, Ryan Hartley, Cary Henry
  • Technical Paper
  • 2020-01-0371
To be published on 2020-04-14 by SAE International in United States
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2. Presented within this manuscript is a method for precise control of the NO2:NOX ratio within the ECTO-Lab exhaust stream by using nitric acid as the NOX precursor molecule in lieu of nitromethane. While decomposition of nitromethane generates NO as the dominate component of the NOX mixture, nitric acid decomposition produces…