Your Selections

Simulation and modeling
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Hypersonic flow simulation towards space propulsion geometries

Universidade Da Beira Interior-Odelma Teixeira, Jose Pascoa
  • Technical Paper
  • 2019-01-1873
To be published on 2019-09-16 by SAE International in United States
With the actual tendency of space exploration, hypersonic flight have gain a significant relevance, taking the attention of many researchers over the world. This work aims to present a numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This will be done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare. These test cases are part of NATO Research and Technology Organization Working Group 10 validation of hypersonic flight for laminar viscous-inviscid interactions. During the validation process several important flow features of hypersonic flow are captured and compared with available CFD and numerical data. Special attention is taken to the phenomenon of vibrational excitation of the molecules. Different vibrational non-equilibrium models are used and compared with the available data. The pressure and the heat flux along the surfaces are also analyzed. The CFD simulation is conducted using an open-source CDF solver for hypersonic flows using the OpenFOAM framework. The two-temperature CFD solver, employing central-upwind interpolation schemes of Kurganov, Noelle e Petrova, hy2Foam, is…
 

Optimization of automated airframe assembly process on example of A350 S19 splice joint

Airbus SAS-Elodie Bonhomme, Pedro Montero-Sanjuan
SPbPU-Sergey Lupuleac, Julia Shinder, Maria Churilova, Nadezhda Zaitseva, Valeriia Khashba
  • Technical Paper
  • 2019-01-1882
To be published on 2019-09-16 by SAE International in United States
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
 

Suppression of Eddy Current Loss in Rectangular Winding of High Power-Density IPMSM Using Concentrated Winding Stator for More Electric Aircraft

Hokkaido University-Sho Manabe, Masatsugu TAKEMOTO
IHI Corporation-Yosuke AKAMATSU, Takehiro JIKUMARU, Fuminori Suzuki, Hitoshi Oyori
  • Technical Paper
  • 2019-01-1910
To be published on 2019-09-16 by SAE International in United States
In order to respond to worldwide environmental problems such as global warming and demands for saving fuel cost of aircrafts from the aviation industry, researches on More Electric Aircraft (MEA) are actively conducted. Conventional hydraulic, pneumatic, and mechanical power sources from aero engines for flight actuators or auxiliary systems are replaced by electric motors in MEA. Interior permanent magnet synchronous motors (IPMSMs) are widely used in various applications for high power density and high efficiency. It is considered that rectangular windings can greatly improve the slot factor, thereby making it possible to increase the power density of IPMSMs. Additionally, in the concentrated winding stator, the coil end can be made shorter than that of the distributed winding stator, which is possible to downsize the stator in the axial direction. In this paper, a high power density concentrated winding IPMSMs which employs rectangular windings for MEA is simulated by 2D-FEA. However, this simulation result reveals that considerable amount of eddy current loss generated in the windings of the motor. Excessive eddy current loss in the windings…
 

Numerical investigation of Electrostatic Spray Painting Transfer Processes for vehicle Coating

Universidade Da Beira Interior-Mohammad Reza Pendar, Jose Pascoa
  • Technical Paper
  • 2019-01-1856
To be published on 2019-09-16 by SAE International in United States
In this study we examined numerically the electrostatic spray transfer processes in the rotary bell spray applicator, which is this case implemented in a full 3D representation. The algorithm implemented and developed for this simulation includes airflow, spray dynamics, tracking of paint droplets and an electrostatic modularized solver to present atomization and in-flight spray phenomena for the spray forming procedure. The algorithm is implemented using the OpenFOAM package. The shaping airflow is simulated via an unsteady 3D compressible Navier-Stokes method. Solver for particle trajectory was developed to illustrate the process of spray transport and also the interaction of airflow and particle that is solved by momentum coupling. As the numerical results in this paper indicates dominant operating parameter voltage setting, further the charge to mass ratio and air-paint flow rate deeply effect the spray shape and the transfer efficiency (TE). The spin of the bell forced the paint to fall off from the bell edge into the high-velocity airflow. By increasing the shaping airflow more uniform distribution of mass of paint is produced but the…
 

Simulation of aircraft assembly via ASRP software

Airbus-Elodie Bonhomme
SPbPU-Nadezhda Zaitseva, Tatiana Pogarskaia, Sergey Lupuleac, Olga Minevich, Julia Shinder
  • Technical Paper
  • 2019-01-1887
To be published on 2019-09-16 by SAE International in United States
ASRP (Assembly Simulation of Riveting Process) software is a special tool for modelling assembly process for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the airframe assembly process certain criteria on the residual gap between parts must be fulfilled. The numerical approach realized in ASRP allows one to evaluate the quality of contact on every stage of the assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps and identification of hazardous areas in junction regions.
 

Compensating the Effects of Ice Crystal Icing on the Engine Performance by Control Methods

Central Institute of Aviation Motors-Oskar Gurevich, Sergei Smetanin, Mikhail Trifonov
  • Technical Paper
  • 2019-01-1862
To be published on 2019-09-16 by SAE International in United States
Aircraft equipment is operated in a wide range of external conditions, which, with a certain combination of environmental parameters, can lead to icing of the engine internal elements. Due to icing, the engine components performance change what leads to decrease in thrust, gas dynamic stability, durability, etc. Safe aircraft operation and its desired performance may be lost as a result of such external influence. Therefore, it is relevant to study the possibilities of reducing the icing effect with the help of a special engine control. The focus of this paper is to determine control methods of an aircraft gas turbine engine addressing this problem. The object of the study is a modern commercial turbofan with a bypass ratio of about 9. In this paper analysis of the effect of ice crystal icing on the engine components performance is conducted. To perform simulation of the engine performance under such impact, degraded components characteristics was introduced into physics-based turbofan model. Control algorithms for this model were developed applied to various regulated variables used in the setpoint controllers…
 

Analysis of a Coupling System of Aircraft Environmental Control and Fuel Tank Inerting Based on Membrane Separation

Beihang University-Weixing Yuan, Jiaqi Hou
CAPDI-Yan zheng
  • Technical Paper
  • 2019-01-1895
To be published on 2019-09-16 by SAE International in United States
This paper raises a coupling system of aircraft environmental control and fuel tank inerting based on membrane separation. The system applies a membrane dehumidifier to replace water vapor removal unit of heat regenerator, condenser and water separator, which is widely used in conventional aircraft environmental control system nowadays. Water vapor can travel across the membrane wall under its pressure difference without phase change, so the dehumidification process consumes no cooling capacity and the cooling capacity of the system increases. This paper first compares the thermodynamic properties of environmental control system based on membrane dehumidification and the environmental control system based on condensation. The results show that the membrane dehumidification system has bigger cooling capacity and lighter weight. For a given cooling capacity requirement of a certain aircraft, the membrane dehumidification system can use less bleed air since the temperature of the outlet air is lower. Nowadays, the fuel tanking inerting system also uses an air separation module to produce nitrogen enriched air based on membrane separation. After the air is dehumidified in membrane environmental control…
 

Numerical Simulation of Syngas Blends Combustion in a Research Single-Cylinder Engine

Instituto Tecnologico de Aeronautica-Pedro Lacava
Universidad de La Republica-Santiago Martinez
  • Technical Paper
  • 2019-24-0094
To be published on 2019-08-15 by SAE International in United States
Despite syngas is a promising alternative fuel for internal combustion engines (ICEs), its extensive adoption has not been adequately investigated so far. The dedicated literature offers several fundamental studies dealing with H2/CO blends burning at high pressure and room temperature, as well as preheated mixture at low pressure. However, these thermodynamic states are far from the operational conditions typical of ICEs. Therefore, it is essential to investigate the syngas combustion process at engine-like conditions to shed light on this fuel performance, in order to fully benefit from syngas characteristics in ICE application. One of the key properties to characterize a combustion process is laminar flame speed, which is also used by the most widespread turbulent combustion models. In the first part, a database of premixed laminar burning rates at engine-like conditions for different syngas (H2/CO) blends is created based on one-dimensional unstretched flame simulations using two validated chemical mechanisms. Then the resulting laminar flame speed values are fitted using a validated in-house method based on logarithmic correlations. In the second part of the paper, these…
 

Experimental characterization of methane direct injection from an outward-opening poppet-valve injector

Istituto Motori CNR-Maurizio Lazzaro, Francesco Catapano, Paolo Sementa
  • Technical Paper
  • 2019-24-0135
To be published on 2019-08-15 by SAE International in United States
The in-cylinder direct injection of natural gas represents a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, either experimentally or from numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility. In this work, the underexpanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by Schlieren and Shadowgraph high-speed imaging. The jet evolution was also followed through Mie-scattering imaging using n-heptane droplets as a tracer. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 17. The gaseous jet has been characterized in terms of its macroscale parameters.
 

A coupled tabulated kinetics and flame propagation model for the simulation of fumigated medium speed dual-fuel engines

Ghent University-Gilles Decan
Lund University-Sebastian Verhelst
  • Technical Paper
  • 2019-24-0098
To be published on 2019-08-15 by SAE International in United States
The present work describes the numerical modeling of medium-speed marine engines, operating under a fumigated dual-fuel concept, i.e. with the second fuel injected in the ports. Due to the need to reduce engine-out emissions while maintaining engine efficiency, manufacturers are investigating new engine technologies. In the maritime industry, a promising technology to achieve these goals is that of fumigated dual-fuel engines, allowing a large amount of diesel to be replaced by a premixed fuel. To fully optimize the operational parameters of such a large maritime engine, computational fluid dynamics can be very helpful. Accurately describing the combustion process in such an engine is key, as the prediction of the heat release and the pollutant formation is crucial. Auto-ignition of the diesel fuel needs to be captured, followed by the combustion and flame propagation of the premixed fuel. In this work, an approach based on tabulated kinetics has been used, to include detailed chemistry while still maintaining acceptable computation times. To allow for the modeling of a fumigated dual-fuel engine, it has been extending with a…