Your Selections

Road tests
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Testing of Electric Microcar for Indian Cities

VNR VJIET-Amjad Shaik, Srinivasa Rao Talluri, Raju Tappa, Ramu Ratlavath
  • Technical Paper
  • 2019-28-0008
To be published on 2019-10-11 by SAE International in United States
Population growth, rapid urbanisation and compounding effects of adding personal vehicles have resulted in increasing the urban air pollution in major Indian cities. Apart from the rising concerns about the urban air pollution, the increasing traffic and lack of parking space difficulties are promoting energy efficient small vehicles. Hence, there is a need to develop a new environmental friendly microcar that relatively affordable and easily manoeuvrable in bigger cities. Electric microcar is one of the most promising options to improve the near term sustainability for personal transportation in cities. This paper mainly presents the development of two seater electric microcar suitable for city driving requirements followed by road test. A mathematical modelling with reference to the urban cycle (Part-one) of modified Indian driving cycle (MIDC) is also carried out for the evaluation of energy and power requirements of electric microcar. The developed electric microcar has been tested on road with the help of the MIDC simulator kit. Results revealed that the developed prototype has demonstrated about 50 km range after one full charge.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Powertrain Calibration Techniques

AVL LIST GmbH-Ernst Winklhofer, Alois Hirsch, Harald Philipp, Michael Trifterer, Manuel Berglez
Published 2019-09-09 by SAE International in United States
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE).ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter.As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.The paper reports on a methodology to measure and evaluate the ICE and EAS response to the vehicle drive requirements and the power shift dynamics between E-motor and ICE.Focus in particular is given to1particle emissions peaks at each engine start and torque variation with measurement of in-cylinder soot formation…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Safety-Relevant Guidance for On-Road Testing of SAE Level 3, 4, and 5 Prototype Automated Driving System (ADS)-Operated Vehicles

On-Road Automated Driving (ORAD) committee
  • Ground Vehicle Standard
  • J3018_201909
  • Current
Published 2019-09-04 by SAE International in United States

This document provides safety-relevant guidance for on-road testing of vehicles being operated by prototype conditional, high, and full (Levels 3 to 5) ADS, as defined by SAE J3016. It does not include guidance for evaluating the performance of post-production ADS-equipped vehicles. Moreover, this guidance only addresses testing of ADS-operated vehicles as overseen by in-vehicle fallback test drivers (IFTD).

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

Ford Motor Company-Joseph Supina, Fazal Syed
Wayne State University College of Engineering-Nizar Khemri, Hao Ying
Published 2019-07-08 by SAE International in United States
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration. Of the total 509,158 trips made by the 382 PSRC vehicles, 496,276 trips (97.47%) were successfully matched to single original ARC trips. The remaining trips were matched to either ARC sub-trips or combined ARC trips. The…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Drivetrain Noise Source Identification and Active Noise Control of a Heavy Off-Road Vehicle

Dongfeng Motor Technical Center-Zuguo Xia
Gissing Tech. Co., Ltd.-Hailin Ruan, Wei Huang, Longchen Li, Xiaojun Chen, Xiujie Tian, Keda Zhu, Changwei Zheng, Jiapeng Zhao, Renjie Dai
Published 2019-06-05 by SAE International in United States
Drivetrain noise from heavy off-road vehicles mainly includes engine noise, drive shaft noise, wheel-side gear noise, tire pattern noise etc. They are the main noise sources for such vehicles as they greatly influence the ride comfort of the passengers inside. This paper solved the drivetrain noise problems of a heavy off-road vehicle using the method of active noise control (ANC). Firstly, the vehicle is benchmarked and the noise problems are analyzed, while the noise sources are identified by analyzing the transmission principles of the drivetrain. Secondly, ANC strategies are made for the vehicle based on the noise profiles under various operating conditions. Thirdly, the multiple parameters for ANC are computed from simulations modeling the vehicle in idle, constant speed and acceleration respectively. Lastly, road tests are conducted using the multiple parameters from the simulations and a noise reduction of 2-4 dB can be achieved in the whole vehicle. The results has shown that ANC is an effective method for drivetrain noise reduction in heavy off-road vehicles as this paper provides references for the systematic solution…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Case Study on Golf Car Powertrain NVH Sources and Mitigation Methods

Club Car, LLC-Adam Clark
Roush Industries, Inc.-Steven Carter, Kenneth Buczek, Mayuresh Pathak
Published 2019-06-05 by SAE International in United States
The golf market has remained flat in North America. Whereas, it has grown worldwide. A trend is seen where the number of young adults and adults over the age of 65 years involved with the game has increased. The demographics in golf showing the most growth also have high standards for the operation of the golf car. They have transcended their expectations to align with some of the qualities expected of automobiles. There is a shift in consumer expectations. Moreover, the market competition has also increased. This drives the OEMs to deliver refined golf cars with NVH being a key aspect in development. This paper showcases a recent study to improve the powertrain N&V performance of an internal combustion engine golf car. Primarily, a test-based approach is followed. Chassis rolls and on road testing are performed for benchmarking and target setting. System and component tests are performed to root cause issues. The tests further help to provide input for mitigation methods for application on the golf cars. Structural modifications address structure-borne noise and perceived vibration.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reducing Vehicle Interior NVH by Means of Locally Resonant Metamaterial Patches on Rear Shock Towers

KU Leuven - DMMS lab, Flanders Make-Luca Sangiuliano, Claus Claeys, Elke Deckers, Bert Pluymers, Wim Desmet
MotionS lab, Flanders Make-Jasper De Smet
Published 2019-06-05 by SAE International in United States
Stringent regulations for CO2 emissions and noise pollution reduction demand lighter and improved Noise, Vibration Harshness (NVH) solutions in automotive industries. Designing light, compact and, at the same time, improved NVH solutions is often a challenge, as low noise and vibration levels often require heavy and bulky additions, especially to be effective in the low frequency regime. Recently, locally resonant metamaterials have emerged among the novel NVH solutions because of their performant NVH properties combined with lightweight and compact design. Due to the characteristic of stop band behavior, frequency ranges where free wave propagation is inhibited, metamaterials can beat the mass law, be it at least in some tunable frequency ranges. Previously the authors demonstrated how metamaterials can reduce the vibrations in a simplified shock tower upon shaker excitation. In this work, the authors apply the metamaterial concept on the real rear shock towers of a vehicle. In order to be able to benchmark the solution, a test vehicle is chosen, which is equipped in its commercial version with a 1.46 kg tuned vibration absorber…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Testing and Analysis of Multi-Channel Active Control System for Vehicle Interior Noise Using Adaptive Notch Filter

Tongji University-Lijun Zhang, Xiyu Zhang, Dejian Meng
Published 2019-06-05 by SAE International in United States
It is considered that slow convergence speed and large calculation amount of commonly used adaptive algorithm in the active control system for vehicle interior noise yield noise reduction performance and hardware requirements problems. In this paper, a 4-channel active control of vehicle interior noise based on adaptive notch filter is established, and road test is carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on adaptive notch filter is established. The computational complexity of the algorithm is analyzed and compared with that of the FXLMS algorithm. Secondly, a hardware-in-the-loop test bench based on multi-channel adaptive notch filter is set up, to measure the noise reduction performance of ANC system under various working conditions. Finally, the typical test conditions are designed to test the system noise reduction performance, and the road test is carried out and result is analyzed.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

‘Road Race’ for AV Testing May Be Slowing

Autonomous Vehicle Engineering: May 2019

Stuart Birch
  • Magazine Article
  • 19AVEP05_10
Published 2019-05-01 by SAE International in United States

To optimize safety, as well as cost- and time-efficiency, experts espouse increased virtual testing of autonomous vehicles as preferable to the industry's rush to test on public roads.

Chris Hoyle, technical director of software specialist rFpro, believes the race by auto and technology companies to be ahead of competitor programs involving autonomous vehicle (AV) testing on public roads is losing momentum.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on the Model of Safety Boundary Condition Based on Vehicle Intersection Conflict and Collision

Tongji University-Biao Wu, Xichan Zhu, Maozhu Liao, Rui Liu
Published 2019-04-02 by SAE International in United States
Because of the high frequency and serious consequences of traffic accidents in the intersection area, it is of great significance to study the vehicle conflict and collision scenarios of the intersection area. Due to few actual crash accidents occurring in naturalistic driving studies data or field operational tests data, the data of traffic accident database should be also used to analyze the intersection conflict and collision. According to the China Field Operation Test (China-FOT) database and the China in Depth Accident Study (CIDAS) database, the distribution feature of the respective intersection scenario type is obtained from the data analysis. Based on the intersection scenario type, two characters of intersection conflict and collision, the environmental character and the vehicle dynamic character, are used to analyze for the integration process of intersection conflict and collision. The environmental character contains several parameters, including environment type, weather and time, which has a strong influence on the collision accidents. Through the environmental parameters analyzing, the distribution model of environmental character is obtained. The vehicle dynamic character includes two vehicle dynamic…
This content contains downloadable datasets
Annotation ability available