Your Selections

Resins
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

Hyundai Motor India Engineering PVT LTD-Vignesh balaji S G, Pradeep S, Aakash S K
  • Technical Paper
  • 2019-28-2538
To be published on 2019-11-21 by SAE International in United States
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts. Methodology: Before beginning the tests, the specimens should be prepared and the steps for the preparation of paper honeycomb reinforced epoxy composites are shown below: 1. Mould Preparation 2. Mixing of Epoxy and Hardener with a ratio of 10:1 3.…
 

Photo oxidation analysis method for automotive coating weathering performance evaluation

Mahindra Engineering-Rahul Lalwani
Mahindra Research Valley-Divya Pande, B Jayanthan, Vinay Kumar
  • Technical Paper
  • 2019-28-2555
To be published on 2019-11-21 by SAE International in United States
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating. This method can save huge time in predicting the weathering performance and decision making. RESULTS (maximum 150 words) Photo oxidation degradation study was performed on…
 

Investigation in Bonding Conditions of CF/Epoxy – PP Hybrid Structures Manufactured by Hybrid Single Shot Method

Clemson University-Hakan Kazan, Ting Zheng, Saeed Farahani, Srikanth Pilla
  • Technical Paper
  • 2019-01-2595
To be published on 2019-10-28 by SAE International in United States
The hybrid single shot method is a novel manufacturing technique which allows to form and bond CF/Epoxy sheet with the injected thermoplastic in a single injection process. This process is promising to overcome the drawbacks of the traditional hybrid structure manufacturing methods by reducing the cycle time, energy consumption, tool, and machinery cost which are the concerns of automakers. In this process, polypropylene (PP) injected over the pre-heated CF/Epoxy prepreg insert. PP is widely used in automotive applications such as bumpers, dashboards, side-sills while CF/Epoxy prepreg has a great potential to enhance the mechanical properties of the hybrid component. Insert material is formed by the pressure of PP and bonded with the thermoplastic part by taking the advantages of polymer heat and the tackiness of prepreg. The final part is promising to combine the inherent properties of these two material while enhancing their weaknesses. However, there is a requirement to identify the bonding capability of this hybrid component to ensure the final part quality. Therefore, a peel test carried out to evaluate the bonding strength…
 

Design and Analysis of Natural Fibre Reinforced Epoxy Composites for Automobile Hood

SRM Institute Of Science And Technology-Akhil Kumar Guduru, V N B Prasad Sodisetty, Vidya Prudhvi Sai Katari
  • Technical Paper
  • 2019-28-0086
To be published on 2019-10-11 by SAE International in United States
The need for eco-friendly materials is recently increasing in the automobile and aerospace sectors. Material selection for automobile components is influenced by various factors such as cost, weight and strength. Natural fibers offers various advantages over conventional materials such as environmental friendly, easily available, recyclable and higher specific strength. Among the natural fibers Sisal and Kenaf fibers are selected for present study due to their good mechanical properties and availability. Kenaf fibers have great potential to be used as construction and automotive materials due to their long fibers which are derived from the bast. Sisal fibers do not absorb moisture and posses good impact, sound absorbing properties and high fire resistance properties. Epoxy LY556 is selected as matrix material to bind the combination of these two natural fibers due to its high temperature resistance and adherence to reinforcements. Alkaline treatment was carried out to remove the moisture from the natural fibers. Fabrication of epoxy/Kenaf fibre/Sisal Fibre composite materials of different stacking sequence was carried out by Vacuum Assisted Resin Transfer Molding (VARTM) method. These composites…
 

Experimental Investigation on Mechanical Properties and Vibration Damping Frequency Factor of Kenaf Fibers Reinforced Epoxy Composite

Hindustan Institute of Technology and Science-Sathish Kumar Rajamanickam, Sivakumar Sattanathan, Deenadayalan Ganapathy, Joshuva Arockia Dhanraj
Sri Krishna College of Engineering and Technology-Vishnuvardhan Ravichandran
  • Technical Paper
  • 2019-28-0167
To be published on 2019-10-11 by SAE International in United States
Kenaf fiber regarded as industrial crop for different applications. It is one of the most important plants cultivated for natural fibers globally. Natural fibers such as Kenaf fibers are getting attention of researchers and industries to utilize it in different composites due to its biodegradable nature. In this present investigation mechanical properties, vibration damping frequency factor and thermogravimetric analysis of Kenaf fiber reinforced epoxy composite (KFREC) have been evaluated and reported. The tests were conducted with different weight categories of Kenaf fiber such as 20%, 25%, 30% and 35%. The effects of fiber content on tensile, flexural, impact strengths, hardness and thermal decomposition properties of the composite were determined. The failure mechanism and damage features of the KFREC were categorized using Scanning Electron Microscope (SEM). The results indicate that the increase in the fiber content decreases the damping vibration factor (ζ) correspondingly. The lowest value of the damping vibration factor was recorded as 0.033 for 35% weight content of Kenaf fiber in the composite. The maximum value of hardness, tensile, flexural, and impact strengths were…
 

Exploration of dry sliding wear behaviour of sisal fiber-reinforced Cashew Nut Shell Liquid and epoxy polymer matrix composite as an alternative friction material in automobiles

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Shanthosh Gopal, Tharunkumar Magudeeswaran, Ramamoorthi Rangasamy
  • Technical Paper
  • 2019-28-0173
To be published on 2019-10-11 by SAE International in United States
Brake pad is one of the foremost imperative part in the vehicle. Due to the environmental requirement, natural material/composites were the alternate source for component manufacturing. The composite made using hot press techniques by mixing ingredients such as natural fiber (treated sisal), cashew nut filler, graphite and alumina with resin (cashew nut shell liquid - CNSL and epoxy). Two formulas and four samples of each set were composed by varying the resin type and prepared the test samples with attain better hardness. The main intern of this proposed work is to appraise the dry sliding wear and friction performance of the prepared composites. The composites are taken for tribo test by varying the load of 10,20,30,40 N and sliding distance of 1000, 2000 m respectively. Experiments were performed at stated process parametric conditions to record the responses. The result shows that the CNSL resin composites specific wear resistance and frictional coefficients are found better than epoxy resin composites. The addition of filler element cashew nut shell particular shows a better wear resistant and friction coefficient.…
 

Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials

Indian Institute of Technology Delhi-Navnath Kalel, Jayashree Bijwe, Ashish Darpe
  • Technical Paper
  • 2019-01-2105
To be published on 2019-09-15 by SAE International in United States
The binder in friction materials (FMs) plays a very crucial role of binding all the ingredients firmly so that they can function efficiently and reliably. The type and amount of binder, both are very critical for manipulating the desired performance properties, which mainly include friction and its sensitivity towards operating parameters, wear resistance, counter-face friendliness, noise, vibration etc. Although a lot is reported on the influence of types of resins on the tribo-performance of FMs, hardly any paper pertains to paint this on a bigger canvas with a more detailed understanding of the amount of resin in FMs on the performance properties including noise. The present study addresses these aspects by developing brake-pads with identical composition, but varying in amount (wt.%) of straight phenolic resins (6, 8, 10 and 12) by compensating the difference by barite, a space filler. Tribological performance of the composites evaluated on a full-scale inertia brake dynamometer following JASO C406 test schedule while that of noise was measured on reduced scale prototype. With the increase in resin contents, most of the…
 

Aging Effect on Disc Pad Properties

Compact International (1994) Co., Ltd.-Meechai Sriwiboon, Kritsana Kaewlob, Nipon Tiempan
SKR Consulting Inc.-Seong K. Rhee
  • Technical Paper
  • 2019-01-2108
To be published on 2019-09-15 by SAE International in United States
One Low-copper formulation and one Copper-free formulation were made into disc pad, and both of them were cured under 4 different conditions. These pads had no backing layer and no scorched layer. Pad thickness, dynamic modulus and natural frequencies were continuously monitored over a period of 12 months. After 12 months at room temperature, pad thickness, dynamic modulus and natural frequencies all increased to higher values. The Low-copper formulation increased rapidly during the first 60 days and the Copper-free formulation increased rapidly for the first 90 days, and then slowly thereafter. Two competing processes are found to be taking place; internal stress relief leading to expansion and cross-linking of the resin leading to shrinkage. As the pad properties are changing continuously, the timing of property measurement becomes an important issue for quality assurance. Implications of these changing properties are discussed for friction, wear, brake squeal and squeal modeling/simulation, and simple non-destructive test methods are recommended for checking pad quality consistency.
 
new

Thermal Conductivities of Some Polymers and Composites

Aerospace & Defense Technology: August 2019

  • Magazine Article
  • 19AERP08_09
Published 2019-08-01 by SAE International in United States

Assessing the performance of polymers used in structural armor and filament winding applications.

Thermoset polymers are good electrical insulators that are used in applications ranging from electronics to composite armor. They are rather poor thermal conductors, however.

Annotation icon
 

Multidisciplinary Design Analysis and Optimization of Aerospace Composites

Charles Lu
  • Progress In Technology (PT)
  • PT-201
Published 2019-04-30 by SAE International in United States
Multidisciplinary Design and Optimization of Aerospace Composite Materials is a collection of ten SAE technical papers focusing on the design analysis of aerospace composite structures from the perspective of various disciplines. The book concentrates on the following aspects: • Analytical methods for weight design of aircraft structures, including a parametric geometry model capable of generating dedicated models for both aerodynamic and structural solvers. • Methodologies for evaluating the structural performance of carbon/epoxy composite panels. • An aerodynamic design of flexible wings made of composite structures. • Thermal design and analysis of composite enclosures. • Methodologies for analyzing the acoustic performance of composite structures, including the design optimization method to evaluate the acoustic performance in terms of transmission loss (TL) of various composite panels. • The lightening effect on composites, presenting a theoretical method to compute the electrical current propagating through composite structures due to lightning strikes. • The issue of fire resistance as most polymer resins are flammable once the respective ignition temperatures are reached. • A probabilistic-based reliability analysis of the composite structures. The…
Annotation icon