Your Selections

Productivity
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High Durable PU Metallic Monocoat system for tractor sheet metal application.

Mahindra & Mahindra, Ltd.-Rahul Lalwani, Sudhir Sawant, Yogesh keskar, Nitin Pagar
Mahindra Research Valley-Vinay Kumar
  • Technical Paper
  • 2019-28-2541
To be published on 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving. Metallic mono-coat formulated using strong polyurethane resins & latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology further, reduction of baking temperature is possible & reduce further energy consumption. The proposed technology is fully validated on component and ready. Proposed…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

Mahindra & Mahindra, Ltd.-Divyanshu Joshi, Saravanan Muthiah
Mahindra Research Valley-Shubham Kedia
  • Technical Paper
  • 2019-28-2397
To be published on 2019-11-21 by SAE International in United States
Title Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation Authors Mr. Shubham Kedia, Dr. Divyanshu Joshi, Dr. Muthiah Saravanan Mahindra Research Valley, Mahindra & Mahindra, Chennai Objective Objective metrics for evaluation of major vehicle dynamics performance attributes i.e. ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by ISO and SAE, which involve data processing, statistical analysis and complex mathematical operations on acquired data, through simulations or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. In the current work, a GUI based post-processing tool is developed for automated evaluation of ride, handling and steering performance. Methodology This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics from testing and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

Clemson University-Dennis Robertson, Robert Prucka
  • Technical Paper
  • 2019-24-0027
Published 2019-09-09 by SAE International in United States
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map. A key controls challenge of SACI is the two regimes of combustion are near several constraints that may be competing. This work summarizes key findings from decades of research that can help enable production control strategies for SACI engines. A summary and analysis of the broad…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Data connectivity in HARSH ENVIRONMENTS

SAE Truck & Off-Highway Engineering: August 2019

Christian Manko
  • Magazine Article
  • 19TOFHP08_03
Published 2019-08-01 by SAE International in United States

Ensuring high-speed data transmission requires OEM designers to think more about components, placement and the impact of environmental conditions early in design.

Technology advances are increasingly bringing a new level of connectivity to industrial and commercial vehicles. Customers are demanding functionality that automates or enhances operational tasks to increase driver productivity and safety and, in many cases, also brings down total cost of ownership.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Capturing the Impact of Fuel Octane Number on Modern Gasoline Vehicles with Octane Indices

SAE International Journal of Fuels and Lubricants

Argonne National Laboratory, USA-Forrest Jehlik, Henning Lohse-Busch, Simeon Iliev
Illinois Institute of Technology, USA-Carrie Hall
  • Journal Article
  • 04-12-02-0005
Published 2019-05-09 by SAE International in United States
The need for high efficiency automotive engines has led to more complex air handling and fuel injection systems, higher compression ratios, more advanced combustion and aftertreatment systems, and the use of fuels with higher octane ratings. Higher octane number fuels have a lower propensity to knock. This work studies the influence of changing fuel octane rating on two modern production gasoline vehicles, one with a naturally aspirated, port injected engine and the other with a turbocharged, direct injected engine, using fuels with four different octane number grades (with 85, 87, 91, and 93 anti-knock indices) and operated over a variety of driving cycles and temperature conditions. Unlike previous studies, this effort develops and demonstrates a methodology that isolates fuel effects on fuel consumption and provides a clear view of the octane impact on existing vehicles. While fuel octane rating can also impact factors such as the allowable compression ratio and gear shifting strategies, this study examines fuel consumption changes that are solely attributable to octane rating on production vehicles. The developed approach uses results from…
This content contains downloadable datasets
Annotation ability available

A Guide to Collaborative Robot Safety

  • Magazine Article
  • TBMG-34385
Published 2019-05-01 by Tech Briefs Media Group in United States

The ability of collaborative robots to share tasks with humans and flexibly adapt to new requirements can provide high returns on investment in a wide variety of industrial applications. Manufacturers employ these robots to reap the benefits of integrated safety features that allow them to work with or close by humans and boost productivity for a wide variety of repetitive tasks.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integrating a Proactive Quality Control Concept into Machining Operation of a Crankshaft Manufacturing Process

FCA US LLC-Loda Bazzi
Published 2019-04-02 by SAE International in United States
Competition in the manufacturing industry is ever increasingly intense. Manufacturing organizations that want to grow and prosper must embrace a discipline of constant improvement. Their engineering departments are tasked with improving existing manufacturing processes in terms of quality and throughput, which is vital to competing on a global scale. Manufacturers strive to utilize technologies to extract efficiencies from their existing processes. Reducing scrap and rework is the paramount goal in increasing a processes’ efficiency. The foundation of this study is to analyze a production line to determine the quality status throughout the manufacturing process. The intention is to react to process instability before the production becomes non-compliant (scrap/rework) which will significantly improve productivity.By incorporating the proposed technology into the production process, the desired achievement will be to spot process variables at the earliest stages so that counter measures can be taken to stabilize the process before production drifts into non-compliance. Furthermore, the technology will communicate with machining operations to initiate counter measures such as program offsets, tool changes and wheel dressings. The main goal of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Ecosystem for Design Assessment and Verification by BAJA Dynamometer Capstone Team at the University of Nebraska

Imagars LLC; Portland State University-Baldur Steingrimsson
Portland State University-Bao Phan, Sung Yi
Published 2019-04-02 by SAE International in United States
This paper summarizes the outcome of an evaluation by capstone design teams from the Department of Mechanical and Materials Engineering at the University of Nebraska-Lincoln, of the Ecosystem for Design Assessment and Verification. The Ecosystem is a design decision support tool whose main goal is to identify design oversights, defined in terms of deviations from the design process or unfulfilled design requirements, early in the design process, guide designers through the design process, and teach proper design techniques. It is capable of automatically assessing students’ design work against ABET compliant learning outcomes. The Ecosystem offers many additional features found useful by capstone design teams, such as automatic generation of formatted project reports as well as interfaces to tools for team communications (Google Drive, Dropbox or OneDrive) or development (e.g., SolidWorks, CATIA, NX Unigraphics or AutoCAD).The Ecosystem was recently evaluated by a capstone team working on an automated straw flattening machine and again during a following semester by a team designing a dynamometer used for measuring the engine power of a BAJA race car.The paper draws…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Now You See It, Not You Don’t

Cold Jet LLC-Steve Wilson
Published 2019-04-02 by SAE International in United States
No matter how large or small of an operation, there is a great demand for automotive component manufacturers, increase the productivity of their equipment, improve the quality of their parts, all the while lowering costs. This can be a balancing act between using the most effective technology while working within a shrinking budget.This presentation discusses the advantages of dry ice cleaning solutions in a variety of automotive applications: 1) as a replacement for solvent and/or mechanical cleaning for the removal of contaminants from tooling, at operating temperature and while it is still in the production machine, 2) deflashing plastic molded parts, 3) removing excess film from IMD parts, and 4) the surface preparation of molded plastic parts prior to painting or coating, replacing traditional aqueous washing methods and subsequent drying.Supporting research from several independent studies (Kettering University, Materials & Process Associates, etc.) will be presented along with industry case studies, pictures and video clips to demonstrate the various proven solutions in the automotive industry.The reader will achieve an understanding of how to improve the environmental…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Mobile Laser Trackers for Aircraft Manufacturing: Increasing Accuracy and Productivity of Robotic Applications for Large Parts

FFT Produktionssysteme GmbH & Co KG-Fabian Ehmke
Fraunhofer IFAM-Christoph Brillinger, Till Staude, Kevin Deutmarg, Maximilian Klemstein, Christian Boehlmann
Published 2019-03-19 by SAE International in United States
The demand for higher production rates of large parts in aircraft industry requests more flexible manufacturing solutions. High-accurate mobile robots show a promising alternative in comparison with high-invest special machines. With mobile robot-based solutions processes can be executed simultaneously which increases the productivity significantly. However, the freedom of mobility results in insufficient positioning accuracy of these machines. Hence fast and accurate referencing processes are required to achieve cost-effectiveness and meet production tolerances. In this publication a Mobile Laser Tracker (MLT) system and a holistic approach for future manufacturing systems with mobile robots will be introduced and discussed.
Annotation ability available