Your Selections

Show Only


File Formats

Content Types











Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
To be published on 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to effectively store the zeolite and it is attached to the exhaust port of the engine. The selected engine…

Analysis of pressure variation in wheel using statistical methods

Abhishek Mandhana
College of Engineering Pune-Rajiv basavarajappa PhD
  • Technical Paper
  • 2019-28-2450
To be published on 2019-11-21 by SAE International in United States
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions. The data obtained from the wheel speed sensor is analyzed through statistical methods and different determining values are calculated. These determining parameters are compared to see the variations in the pressure. To obtain…

Combustion Optimization and In-cylinder NOx and PM Reduction by using EGR and Split Injection Technique

A R A I-Madhan Kumar, Aatmesh Jain, Kamalkishore Chhaganlal Vora
  • Technical Paper
  • 2019-28-2560
To be published on 2019-11-21 by SAE International in United States
Nowadays, the major most challenge in the diesel engine is the oxides of nitrogen (NOx) and particulate matter (PM) trade-off, with minimal reduction in Power and BSFC. Modern day engines also rely on expensive after-treatment devices, which may decrease the performance and increase the BSFC. In this paper, combustion optimization and in-cylinder emission control by introducing the Split injection technique along with EGR is carried out by 1-D (GT-POWER) simulation. Experiments were conducted on a 3.5 kW Single-cylinder naturally aspirated CRDI engine at the different load conditions. The Simulation model incorporates detailed pressure (Burn rate) analysis for different cases and various aspects of ignition delay, premixed and mixing controlled combustion rate, the injection rate affecting oxides of nitrogen and particulate matter. The predictive combustion model (DI-PULSE) has been developed for the calibration of an engine under multiple injections and the detailed injection rates with EGR rates. Split injection with higher fuel quantity injected in the 1st pulse, helped to significantly reduce PM emissions. This reduction is due to the restraint in the premixed phase of…

Effect of Tyre inflation Pressure on Rolling Resistance of Tyre

International Centre For Automotive Tech-Amit Kumar Karwal, Dushyant wazir, Mukund Mishra
International Centre For Automotive Tech.-Siddharth Tripathi
  • Technical Paper
  • 2019-28-2415
To be published on 2019-11-21 by SAE International in United States
Rolling resistance, is nothing but the rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is,not all the energy needed for deformation of the wheel, roadbed, etc. It is recovered when the pressure is removed, in the form of hysteresis losses and permanent deformation of the tyre surface. So, the rolling resistance contributes to the deformation of roadbed as well as tyre surface of the vehicle. Factors contributing in rolling resistance are tyre inflation pressure, wheel diameter, speed, load on wheel,, surface adhesion, sliding, and relative micro-sliding between the surfaces of contact. In this concerned paper we are significantly working on effect of tyre inflation pressure on rolling resistance and taking all other factors constraint.

Development of high power density diesel engine for constant speed application

TMTL-Rakesh K
  • Technical Paper
  • 2019-28-2566
To be published on 2019-11-21 by SAE International in United States
Engine up gradation for higher power rating involves challenges that require hardware changes which not only increase cost but also demand higher space. This paper focuses on the up gradation of a 4 cylinder 4.9l CRDi engine from 24.03 kW/L to 30.75 kW/L by adjustment of various parameters to meet both emission and performance targets. Various challenges like higher exhaust temperature, increased peak firing pressure etc. were met using the proper calibration strategy. To meet SFC targets and keep peak firing pressures, exhaust temperatures within desired limits, different operating points for EGR, main injection timing, rail pressure have been optimized. The operating points for optimization were determined by conducting various drive trials on different type of load conditions in test bench. Calibration strategy involved the safe limits of NOx, soot, CO emissions, fuel consumption.pfp, and exhaust temperature. By using the same hardware we are thus able to achieve higher power rating for same engine and also meet CPCB 2 emission norms comfortably.

Correlation of Noise Emitted by vehicle on an External Pass-By Noise Track and Indoor Anechoic Chamber

International Centre For Automotive Tech.-Ikshit Shrivastava
  • Technical Paper
  • 2019-28-2425
To be published on 2019-11-21 by SAE International in United States
Ikshit Shrivastava1, Kiranpreet Singh2 1,2 International Centre for Automotive Technology (ICAT), Gurugram, India Introduction: Pass By Noise emitted by the vehicle is one of the most critical tests for certification is vehicle worldwide. There are a number of national and international regulations to define test procedure. Though the available tracks are constructed to meet the requirements of these test standards, but there are other external parameters viz. ambient temperature, barometric pressure, wind speed and its direction, affecting the measurements. These parameters are beyond the control of human and this contamination of test data results in longer test time to monitor atmospheric/ambient conditions and perform the test. Indoor pass-by noise testing is a comparatively new method of testing, which is yet to be evaluated for repeatability/correlation with conventional exterior pass-by noise testing. Objective: This paper aims to establish a correlation between exterior pass-by noise testing and indoor pass-by noise testing. This correlation will serve to establish a foundation for future developments in automobiles; and, evaluate the use of indoor pass-by noise testing as an acceptable alternative…

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

Tata Technologies Ltd-Aashish Bhargava, Gaurav Soni
Tata Technologies, Ltd.-Sujit Gavade
  • Technical Paper
  • 2019-28-2431
To be published on 2019-11-21 by SAE International in United States
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected. Further Engine testing carried out with selected Compression ratios and parameters such as Fuel efficiency, In cylinder pressure, Brake thermal efficiency and Ignition delay were compared.

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

AVL LIST GmbH-Franz Murr, Ernst Winklhofer
  • Technical Paper
  • 2019-28-2504
To be published on 2019-11-21 by SAE International in United States
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas aftertreatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost-efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented or simulated vehicle concepts for light duty gasoline and diesel powertrains. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars. The possibilities of 12/24 & 48V technologies for fuel economy and emission reduction will be discussed. Simultaneously, tools for testing and calibration at power train testbed…

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
To be published on 2019-11-21 by SAE International in United States
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of…

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

M.I.T. Campus, Anna University Chennai.-Mebin Samuel P, Devaradjane Gobalakichenin
University College of Engg Villupuram-Gnanamoorthi V PhD
  • Technical Paper
  • 2019-01-2604
To be published on 2019-10-28 by SAE International in United States
The research work intends to assess the need and improvement of using a low viscous bio oil, RH (Rice Husk) Nano Particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel was its higher viscosity. Hence, a low viscous oil (Pine oil) which doesn’t need transesterification process was used as a biofuel in this study. To further improve its characteristics a non-metallic Nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (Hydrocarbon), Smoke, CO (Carbon monoxide). On the contrary NOx (Oxides of Nitrogen) emission was found to be increased for all load values. At peak load, when compared with diesel, pine oil with RH has 19.2% increased NOx emission. To reduce this increased NOx emission, water was injected along…