The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Power steering
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Active Sound Generation Technology using Motor Driven Power Steering System

Hyundai Motor Co.-Kyoung-Jin Chang
Mdynamix AG-Leonhard Angerpointner, Dominik Schubert, Matthias Niegl
  • Technical Paper
  • 2020-01-1536
To be published on 2020-06-03 by SAE International in United States
As original engine sound is usually not enough to satisfy the driver’s desire for the sporty and fascinating sound, active noise control (ANC) and active sound design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicle using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifier or external actuators. This paper presents a new technology of generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) which is already mounted in vehicle. Firstly, an algorithm of this technology, called an active sound generation (ASG), is introduced with those signal conversion process, and then the high frequency noise issue and its countermeasure are presented. Secondly, ASG test bench is designed using a motor driven power steering (MDPS) system and then it is checked if ASG has any influence on an original function of MDPS. Thirdly, motor-induced vibration is measured in the transfer path and then the appropriate level…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Rig and Hardware-in-the-Loop Test Bench for Evaluating Steering Performance

Hyundai Motor Company-Changsu Kim, Byungrim Lee, Youngdae Park
  • Technical Paper
  • 2020-01-0647
To be published on 2020-04-14 by SAE International in United States
The development of vehicles faces changes in many future flows. The vehicle’s power transfer systems are being changed from conventional types to Hybrid, Electric and Hydrogen vehicles. At this moment, the technology of EPS (Electric Power Steering) system has been expanding from a simple torque assist system to LKAS(Lane Keeping Assist System), PAP(Park Assist Pilot), ALCAS(Active Lane Change System), ADAS(Advanced Driver Assistance System). A good test bench is necessary for the evaluation of both hardware and control logics of EPS in these complexities of development process. Simultaneous Rig and HILS tests can be performed to check that the steering hardware system can perform to the concept of the development vehicle and develop EPS control logic performances. The hardware performance of the steering system might be evaluated based on measured friction and stiffness, taking into account various driving conditions. And the control logic of the EPS can be evaluated based on the response capability and steering torque measured through the appropriate vehicle model which could represent virtual driving conditions.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Improve Transient Response Correlation of SUV Using MSC.ADAMS & MSC.EASY5 Functional Mock-Up Interface for Hydraulic Power Steering System

Mahindra Research Valley-Baskar Anthonysamy, Visweswara Lenka, Balaramakrishna N, Abhijit Londhe
  • Technical Paper
  • 2020-01-0651
To be published on 2020-04-14 by SAE International in United States
This paper presents a comprehensive model of a hydraulic power steering system for predicting the transient responses under various steering inputs.The hydraulic system model, which integrates together all fluid line elements and hydraulic components, is formulated using the MSC Easy5 software. A full vehicle model is developed in ADAMS/Car. Functional Mock up Interface (FMI), a tool independent standard is used for co-simulation of ADAMS and Easy5 Dynamic models.This paper describes a co-simulation methodology developed using FMI interface for full vehicle Simulations using hydraulic power steering. A virtual simulation scheme is developed to obtain the system transient responses and the results are compared with those measured from the tests.In general, the simulation results agree with those obtained from the tests under the same steering inputs and operating conditions. The presented model can predict the dynamic steering characteristics of the full vehicle transient simulations with a good accuracy, which could otherwise only be done through testing on prototypes. These models can be used for tuning of performance and design of new power steering system.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

GNSS-Based Lane Keeping Assist System Using Model Predictive Control and Time Delay Compensation

Mitsubishi Electric Corp.-Kenta Tominaga, Yu Takeuchi, Hiroaki Kitano, Uno Tomoki, Rien Quirynen, Stefano Cairano
  • Technical Paper
  • 2020-01-1023
To be published on 2020-04-14 by SAE International in United States
In recent decades, research and development in the field of autonomous vehicles have rapidly increased throughout the world, and autonomous driving technologies have begun to be applied to mass production vehicles. Especially recently, even affordable mass production vehicles have begun to be equipped with some autonomous driving systems such as a Lane Keeping Assist (LKA) system. In general, mass-produced LKA systems use a lane detection camera as a means of keeping the lane. One of the common limitations of camera-based LKA systems is that the lane keeping performance significantly decreases when the camera cannot detect lane markings for various reasons such as snow coverage or blurred lane markings. To overcome this limitation, we have developed Global Navigation Satellite System (GNSS)-based LKA systems, which are not affected by the surrounding environment such as weather and the condition of lane markings. In our latest study, we applied Model Predictive Control (MPC) to our GNSS-based LKA system so as to enhance lane-keeping performance. We then revealed that the GNSS-based LKA system with MPC had low robustness regarding the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Outer Loop of Trajectory and an Inner Loop of Steering Angle for Trajectory Tracking Control of Automatic Lane Change System

Tongji University-Yang Yang Wang, Yuan Xing Jiang, Zhi Guang Liu, Guang Da Chen
Published 2019-11-04 by SAE International in United States
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller. Specifically, the peak trajectory error in Y direction of MPC+SMC is by about 50% smaller under velocity from 60km/h to 80km/h, and lane change duration is also shorter than the PID+SMC scheme. And compared to the servo…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hydraulic Pump Airborne Noise Bench Test

Vehicle Performance Steering Committee
  • Ground Vehicle Standard
  • J2747_201909
  • Current
Published 2019-09-13 by SAE International in United States
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Control Strategy to Reduce Torque Oscillation of the Electric Power Steering System

Concordia University Montreal-Subhash Rakheja
South China University of Technology-Duo Fu, Wen-Jun Yan, Wen-Bin Shangguan
Published 2019-06-05 by SAE International in United States
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis. The evaluation method proposed in this paper can not only guide the design of controller parameters, but also evaluate the control effect while the performance of several controllers are all excellent.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Robust NVH Engineering Using Experimental Methods - Source Characterization Techniques for Component Transfer Path Analysis and Virtual Acoustic Prototyping

SAE International Journal of Advances and Current Practices in Mobility

Robert Bosch Automotive Steering LLC-Kevin Wienen, Michael Sturm
University of Salford-Andy Moorhouse, Joshua Meggitt
  • Journal Article
  • 2019-01-1542
Published 2019-06-05 by SAE International in United States
A major challenge in automotive NVH engineering is to approach complex structure-borne sound and vibration problems with sufficient accuracy but reasonable experimental effort. Typical issues encountered are poor correlation between objective component performance criteria tested for during bench validation and corresponding subjective targets evaluated during system validation in the actual vehicle. Additional challenges arise from the need to impose assumptions on sophisticated physical vibration problems to reduce the complexity to a level feasible for conventional experimental test methods. This paper addresses all mentioned issues by elaborating on a system NVH engineering approach employing Virtual Acoustic Prototyping (VAP) (related to what is now often called component Transfer Path Analysis) to synthesize time domain sound and vibration responses of vibrating machinery operated in a virtual vehicle environment. One crucial step of VAP is to characterize the strength of vibrating machinery by independent quantities at the significant coupling degrees of freedom (DoF). This study puts special focus on the measurement of free velocity, suitable for machinery operated when resiliently mounted as per ISO 9611, and the in-situ measurement…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Evaluation Methods for Steering Loss of Assist

General Motors-Ibrahim A. Badiru, Valarie Boatman, Steve Gornick, Brian Latouf, Peter Shear, Richard Krentz
Published 2019-04-02 by SAE International in United States
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist.The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP). The final section of this paper gives an overview of a steering system design method aimed at first classifying the level of risk associated with any LoA induced hazard (Automotive Safety Integrity Level - ASIL) and then taking appropriate…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Drive-by-Wire Conversion of an FMVSS-500 Vehicle for Autonomous Driving Applications

University of Detroit- Mercy-Viken Yeranosian, Nayan Patel, Joseph Vega, Utayba Mohammad, Mark Paulik, Michael Santora
Published 2019-04-02 by SAE International in United States
Autonomous driving has witnessed many developments in the past decade. Most automotive manufacturers and technology companies have been investing in the software and platform development of these vehicles, and long strides have been made in this domain. Nonetheless, academia has been partially isolated from the practical efforts of these developments, due to the cost involved in converting a standard vehicle into a drive-by-wire platform suitable for self-driving vehicular research. In this paper, a low-cost autonomous vehicle platform is developed and the process for converting a Polaris Gem e2 FMVSS-500 vehicle to brake-by-wire, throttle-by-wire, and steer-by-wire is elaborated. The tools and the procedures followed here were all conducted by students, in house, and can be easily duplicated for other FMVSS-500 compatible vehicles. Discussions include the interface of an embedded controller for an electric power steering system, electronic control of hydraulic brake pressure, and modulation of vehicle velocity and acceleration. Complete system operation via remote control is demonstrated.
This content contains downloadable datasets
Annotation ability available