The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Pistons
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of the Compression Chamber and Optimization of the Sealing of a Novel Rotary Internal Combustion Engine using CFD

Aristotle University of Thessaloniki-Savvas S. Savvakis, Elias Nassiopoulos, Dimitrios Mertzis, Zissis Samaras
  • Technical Paper
  • 2020-37-0007
To be published on 2020-06-23 by SAE International in United States
The increasing demand for lower fuel consumption and pollutant emissions favours the development of novel engine configurations. In line with this demand, the present contribution aims to investigate the sealing performance of a new concept rotary split-engine with a very promising thermal efficiency, a very low NOx emissions' level, and a much higher power density than any conventional internal combustion engine can. It uses the Atkinson cycle, a low-temperature combustion process and when it uses two pistons, symmetrically positioned around its shaft, it gives one power stroke every 180 degrees. The main focus of this work is to provide all the steps followed so far in order to ensure an efficient sealing and operation of the compression process of this engine, including the 1D & CFD simulations, CAD design & optimisation, and experimental campaign for verifying the digital results. The so-far investigation and experiments conclude that this new rotary engine can work with no oil lubrication inside the compression chamber and with much lower mechanical losses compared to the existing reciprocating engines.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

Hyundai Motor Company-Munhwan Cho
Korea Advanced Inst of Science & Tech-Ki-Ho Lee, Jeong-Guon Ih
  • Technical Paper
  • 2020-01-1570
To be published on 2020-06-03 by SAE International in United States
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators. The shape of the desired speaker zone is an ellipse, and the required amplitude of this piston source is…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Dynamic behavior of in-cylinder pressure causing fatigue failure of reed valves

Subros Ltd.-Ankit Shukla, Paulson Parayil, Arun Kumar Goel, Kamal Sharma
  • Technical Paper
  • 2020-28-0031
To be published on 2020-04-30 by SAE International in United States
For years, researchers have presented numerous studies that consider interaction between working fluid and reed valve motion in displacement compressors. The computing capacities and available CFD and FEA simulation tools have allowed modeling of fully coupled interaction of fluids and moving structures. The present paper describes our experience and results from developing a simplified model of a multi-cylinder reciprocating piston compressor and estimation of pressure surge during sudden acceleration of such compressors. The results show that sudden speed change causes surge in pressures due to formation of pressure waves that reflect back and forth within cylinder. For the chosen geometry and operating conditions, the duration of such waves is much shorter (~ 0.2ms) as compared to longer response time of reed valves (1 ms) that are stiff and highly inelastic. These high pressure waves eventually exceed the fatigue limit of reed valves and cause failures. These pressure waves also influence the performance of reciprocating by causing noise and vibrations which eventually dissipate in to heat thereby lowering the COP of compressor. Simulation results compare well…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advanced Methods to handle LSPI in TGDI engines

MAHLE Engine Components India, Chennai-Hariprasath ARIVUKKARASU, Rajkumar Mani
Vellore Inst. of Technology, Vellore-Sekarapandian N, Ashok KANNAIYAN, Selvaraji Muthu
  • Technical Paper
  • 2020-28-0008
To be published on 2020-04-30 by SAE International in United States
In order to meet the stringent emission norms like EU6 and EU7 together with CAFÉ/CAFC norms, down-sizing of the engine is one of the thrust areas of focus among the OEMs. To this end, keeping the engine size small but to achieve the required power output, advanced Turbo charged Gasoline Direct Injection engine technology (TGDI) has emerged. However, TGDI technology is susceptible to an abnormal combustion phenomenon termed as Low Speed Pre-Ignition (LSPI) event. This event happens prior to the intended combustion, which causes the catastrophic engine damage. Several studies in terms of simulation and experiments to understand this phenomenon are reported in the literature. The main factors influencing this occurrence are found to be engine design and calibration, fuel types and engine oil formulation (in terms of calcium content). In this paper, advanced methods to handle the LSPI occurrence severity and component level advances in design robustness to avoid the engine damage are reported. The developed techniques include robust piston design, advanced pin coating, Piston ring design and coating technologies. In overall, the techniques…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Trajectory Based Combustion Control for Electrical Free Piston Engine

University of Minnesota-Minal Nahin, Abhinav Tripathi, Zongxuan Sun
  • Technical Paper
  • 2020-01-1149
To be published on 2020-04-14 by SAE International in United States
Previously, the authors have proposed a novel strategy called trajectory based combustion control for the free piston engine (FPE) where the shape of the piston trajectory between top and bottom dead centers is used as a control input to modulate the chemical kinetics of the fuel-air mixture inside the combustion chamber. It has been shown that in case of a hydraulic free piston engine (HFPE), using active motion control, the piston inside the combustion chamber can be forced to track any desired trajectory, despite the absence of a crankshaft, providing reliable starting and stable operation. This allows the use of optimized piston trajectory for every operating point which minimizes fuel consumption and emissions. In this work, this concept is extended to an electrical free piston engine (EFPE) as a modular power source. A dynamic model of a linear electrical free piston engine unit has been developed which consists of a single phase linear generator driven by a single cylinder engine. The linear generator unit not only provides the required electromagnetic force to ensure precise trajectory…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effect of an Active Thermal Coating on Efficiency and Emissions from a High Speed Direct Injection Diesel Engine

Thistle Dubh Ltd.-Robert Gilchrist
University of Oxford-Nick Papaioannou, Felix Leach, Martin Davy
  • Technical Paper
  • 2020-01-0807
To be published on 2020-04-14 by SAE International in United States
This study looked into the application of active thermal coatings on the surfaces of the combustion chamber as a method of improving the thermal efficiency of internal combustion engines. The active thermal coating was applied to a production aluminium piston and its performance was compared against a reference aluminium piston on a single-cylinder diesel engine. The two pistons were tested over a wide range of speed/load conditions and the effects of EGR and combustion phasing on engine performance and tailpipe emissions were also investigated. A detailed energy balance approach was employed to study the thermal behaviour of the active thermal coating. In general, improvements in indicated specific fuel consumption were not statistically significant for the coated piston over the whole test matrix. Mean exhaust temperature showed a marginal increase with the coated piston of up to 6 °C. However, the normalised exhaust enthalpy showed a reduction (apart from the higher speed/load conditions when no EGR was applied). Energy transfer to the coolant was reduced by as much as 1.5 percentage points, in agreement with the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental and Numerical Investigation of the Multiphase Flow and Heat Transfer in an Oil Jet Cooled Engine Piston

General Motors LLC-Jeff Schlautman
Simerics, Inc.-Yawei Chen, Sujan Dhar
  • Technical Paper
  • 2020-01-0165
To be published on 2020-04-14 by SAE International in United States
The piston temperature has to be carefully controlled to achieve effective and efficient thermal management in the internal combustion engines. One of the common methods to cool piston is by injecting oil from the crankcase underside to the piston under-crown area. In the present study, a novel 3-D multiphase thermal-fluid coupled model was developed using the commercial CFD software SimericsMP+ to study the piston cooling using the oil jet. In this model, an algorithm was proposed to couple the fluid and solid computation domain to account for the different timescale of heat transfer in the fluid and solid due to the high thermal inertia of the solid piston. The heat transfer coefficient (HTC) and reference temperature were mapped to the piston top surface and the liner temperature distribution was also used as the boundary condition. The temperature-dependent material properties, piston motion, and thermal contact resistance between the ring and piston were also accounted for. The oil film on the piston under-crown area was captured in the model to ensure an accurate prediction of the heat…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

Zhaojie Shen
Brunel University-Xinyan Wang, Hua Zhao
  • Technical Paper
  • 2020-01-0311
To be published on 2020-04-14 by SAE International in United States
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions. Turbulence kinetic energy, IMEP and methane emissions of the DSO piston geometries were compared with that of the original piston geometry. The results showed that both in-cylinder pressure and heat release rate…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

Clemson University-Ziming Yan, Brian Gainey, Benjamin Lawler
Stony Brook University-James Gohn, Deivanayagam Hariharan, John Saputo, Carl Schmidt, Felipe Caliari, Sanjay Sampath
  • Technical Paper
  • 2020-01-0275
To be published on 2020-04-14 by SAE International in United States
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston. Throughout the experiments, the equivalence ratio, ϕ, was maintained constant at 0.4; the combustion phasing was consistently matched at 6.8 ± 0.4 deg aTDC. It can be concluded that the thick TBC cases achieved 1 to 2 percentage points…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Two prototype engines with colliding and compression of pulsed supermulti-jets through a focusing process, leading to nearly complete air insulation and relatively silent high compression for automobiles, motorcycles, aircrafts, and rockets

Waseda University-Remi Konagaya, Ken Naitoh, Tomotaka Kobayashi, Yuuki Isshiki, Hajime Ito, Hiroki Makimoto, Yoshiki Kobayashi, Yusuke Tada, Nozomu Kikuchi, Aya Hosoi, Yuto Fujii
  • Technical Paper
  • 2020-01-0837
To be published on 2020-04-14 by SAE International in United States
We have proposed a new compressive combustion principle based on pulsed supermulti-jets colliding through focusing process, by injection from chamber wall to chamber center. This principle has potential of relatively-silent high compression around chamber center because of auto-ignition far from chamber wall and nearly-complete air insulation due to encasing of burned high temperature gas. The present principle leading to higher thermal efficiency and higher power will be applicable for automobiles, aircrafts, rockets, and also flying cars to be realized in the future. Then, water cooling system made smaller or even eliminated will result in lower price, while auto-ignition in an area larger than that created by traditional spark-ignition will lead to less NOx emission at very lean burning. Thus, we here show four new evidences based on experimental data and computational and theoretical considerations. (1) Quantitative clarification of compression level at condition without combustion (2) Atomization effect due to high-speed jets reducing fuel tank pressure (3) Combustion experiments in piston-less engine having pulsed 14-focusing jets colliding (1st prototype engine for checking this compressive combustion principle),…