Your Selections

Show Only


File Formats

Content Types











Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

Tata Technologies Ltd-Aashish Bhargava, Gaurav Soni
Tata Technologies, Ltd.-Sujit Gavade
  • Technical Paper
  • 2019-28-2431
To be published on 2019-11-21 by SAE International in United States
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected. Further Engine testing carried out with selected Compression ratios and parameters such as Fuel efficiency, In cylinder pressure, Brake thermal efficiency and Ignition delay were compared.

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

West Virginia Univ.-Mehar Bade, Nigel Clark, Parviz Famouri, PriyaankaDevi Guggilapu
  • Technical Paper
  • 2019-01-2599
To be published on 2019-10-28 by SAE International in United States
The design optimization and control of Free Piston Linear Engine (FPLE) has been found to be difficult as each independent variable changes the dynamics with respect to time. These dynamics, in turn, alters the alternator and engine response to other governing variables. As a result, the FPLE system necessitates an energy balance control algorithm with high-speed dynamic response for stable operation and perhaps optimized system efficiency. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the alternator. This energy balance control is similar to the use of a governor to control the crankshaft rotational speed in a conventional crankshaft driven engine. In addition to that, when stiff springs are added to the FPLE system, the dynamics becomes more sinusoidal and more consistent with increasing spring stiffness. To understand the cycle-to-cycle variations, a comprehensive FPLE numerical model with a 1kW target electric power was developed in MATLAB®/Simulink. An FPLE system corresponding to that numerical model has been operated in the laboratory. In this numerical…

Design of a novel Electro-Pneumatic gear shift system for a Sequential gearbox

Vellore Institute of Technology-Jeevesh Jain, Vaibhav Mittal, Dore Ranganath Srinivasa Raghuraman, Shivam Singh Rathore, Sumit Nilesh Vadodaria
  • Technical Paper
  • 2019-28-0011
To be published on 2019-10-11 by SAE International in United States
This paper describes the design of a novel pneumatic gear shifting system to replace the existing gear stick manual shifting system for ease of the driver while shifting gears. The aim of this work is to have a semi-automatic shifting(pneumatic shifting) removing the need for the driver clutch operation. The system consists of a solenoid valve, CO2 gas pressurized cylinder, double acting cylinder, and single acting cylinder. On basis of the signal received the gear needs to be changed, the shifter opens or closes a magnetic valve assembly. The solenoid valve allows the compressed air into the piston that comes from a pressurized cylinder, in order to create the effect of shifting gears. Pedal shifter and buttons are used to shift the gears. The pedal shifter was designed by using a 3-D printing technique using PLA material. The microcontroller used is ATMEGA-328 in this system. There are three switches, one for upshift, downshift, and clutch respectively. An algorithm has been created in a microcontroller for a sequential gearbox of CBR 600RR. The system has been…

Design and Analysis of Hybrid Metal Matrix Composite Connecting Rod via Stir/Squeeze Casting Route

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Karthik Soundarrajan, Ashokvarthanan Perumal
  • Technical Paper
  • 2019-28-0113
To be published on 2019-10-11 by SAE International in United States
Connecting rod is a link which connects the crankshaft and piston in an internal combustion engine. The main role of a connecting rod is to change the rotation movement of the crankshaft to the linear movement of the piston and it also withstands high tensile and compressive stress. Mostly the connecting rod is manufactured by forging process or machining process. The main intern of our proposed work is to manufacture a two set of composites A356 alloy with reinforcement of 5 wt% silicon carbide and 10 wt% flyash by using stir casting and stir cum squeeze casting process and obtain testing results. Further, the same material properties were taken for modelling and analysing of the developed connecting rod. Now a day’s composite material takes a vital role/demandable one in the analysis because it offers novel response and satisfies current industrial needs. The FEA analysis is done on the connecting rod by taking four different case conditions for an 180cc engine. The output parameter such as total deformation, Von Mises stress, and maximum equivalent stress are…

Real Time Piston Temperature Measurement using Telemetry Technique in Internal Combustion Engine

Cummins Technology India Limited-Anil Thakur, Kunal Kapadnis, Hemlata Raut, Rahul Shriram More, Prashant Deshmukh, Deepak Gundecha
  • Technical Paper
  • 2019-28-0022
To be published on 2019-10-11 by SAE International in United States
By looking current scenario, engine development lead time was reducing day by day to enter early in the competitive market and to compete as early as possible. During initial engine development phase, it was very important to know how engine operating temperatures were affecting to piston pack and related system. Conventionally temp plug method was used to capture the piston temperature, but it was time consuming, much costly, for every test condition, new temp plug pistons required, if unfortunately, any hot shutdown happened during the test, again full test needs to be restarted with new set of temp plug pistons and many more limitations. So, for Cummins engine we used Telemetry technique to measure the piston temperature ONLINE and in real time. Piston telemetry enables the telemetric transfer of piston data from internal reciprocating and rotating components. The pistons had wireless telemetry to send real time steady state and transient data from within engines. The piston telemetry data transfer devices used to meet the stringent demands of harsh operating environments. Piston telemetry transmitters can be…

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

Istituto Motori CNR-Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
  • Technical Paper
  • 2019-24-0233
To be published on 2019-10-07 by SAE International in United States
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many index and methodologies has been proposed. In this work, most used methods for knock onset detection from in-cylinder pressure analyses have been considered. Moreover, same methodologies were applied also to the ionization signal collected through the spark plug, properly instrumented. High speed imaging has been carried out in the combustion chamber of a high performance DISI engine provided…

A New Positioning Device Designed for Aircraft Automated Alignment System

Shanghai Jiao Tong University-Jie Huang, Long Yu, Yuhan Wang
Shanghai Top NC Tech Co Ltd-Yilian Zhang
  • Technical Paper
  • 2019-01-1883
To be published on 2019-09-16 by SAE International in United States
Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and Automated Alignment System. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, which combines the symmetry of the sphere and the principle of projection transformation, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system inside the ball-socket will drive the piston to move to the specified location. Meanwhile, the amount of…

Benefits and Application Limits of Phenolic Piston Material in Opposed Piston Calipers

General Motors LLC-David B. Antanaitis, Mark Riefe
SBHPP-Chris Ciechoski
  • Technical Paper
  • 2019-01-2123
To be published on 2019-09-15 by SAE International in United States
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry – for sliding calipers. For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions? Are there still benefits for judder with the much shorter length to diameter ratio the pistons have in these applications? Secondly – it is clear that the much shorter lengthy to diameter ratio of the piston in opposed piston calipers will result in significant increases in contact stress on the piston material…

PIV and DBI Experimental Characterization of Air flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

GM Global Propulsion Systems-Alberto Vassallo
General Motors Italia S.r.l.-Francesco Concetto Pesce
  • Technical Paper
  • 2019-24-0100
To be published on 2019-09-09 by SAE International in United States
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it. The present study aims to define a methodology to analyze the velocity field and consequently TKE distribution as well as to characterize soot formation inside of a real bowl geometry considering different operating conditions. For that purpose, two different optical techniques were simultaneously applied in this study. On the one hand, in-cylinder velocity fields were measured by using…