Your Selections

Peening
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ultralight Axle Development-Fracture Mechanics Life Predictions (40% Weight Reduction)

Magna Drivetrain of America Inc.-Michael Bujold
  • Technical Paper
  • 2020-01-0179
To be published on 2020-04-14 by SAE International in United States
This paper details the light weighting efforts of an axle drive with innovative design techniques on the pinion and ring assembly and the use of Fracture Mechanics technology. This premise of this work is that in order to obtain the lightest weight components the current methods of predicting life in manufactured components can be improved/extended with the use of a Fracture Mechanics technique (Crack Growth Theory). This technique assumes that all metal components are manufactured with a certain level of defects. These defect sizes can be quantified through multiple techniques (ultrasonic, and other). The processing can be improved to minimize the size of these defects with process improvements such as vacuum arc re-melting techniques.Inclusions in the materials are the result of addition of elements in the steel melt that are added for easy of machinability. The vacuum arc (VIMAR process) is used to minimize the formation of these inclusions (Aluminum Oxide, …) and thus decrease the size and density of the defects. All materials have some level of defect in the manufacturing process. This paper…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Improved Wear Resistance of Austempered Gray Cast Iron Using Shot-Peening Treatment

Oakland University-Yu Liu, Gary Barber
Zhejiang Sci-Tech University-Weiwei Cui, Bingxu Wang
  • Technical Paper
  • 2020-01-1098
To be published on 2020-04-14 by SAE International in United States
In this research, ball-on-plate reciprocating sliding wear tests were utilized on austempered and quench-tempered gray cast iron samples with and without shot-peening treatment. The wear volume loss of the gray cast iron samples with different heat treatment designs was compared under equivalent hardness. The phase transformation in the matrix was studied using metallurgical evaluation and hardness measurement. It was found that thin needle-like ferrite became coarse gradually with increasing austempering temperature and was converted into feather-like shape when using the austempering temperatures of 399°C (750°F). The residual stress on the surface and sub-surface before and after shot-peening treatment was analyzed using x-ray diffraction. Compressive residual stress was produced after shot-peening treatment and showed an increasing trend with austempering temperature. In sliding wear tests, austempered gray cast iron had lower wear volume loss than quench-tempered gray cast iron before and after shot-peening treatment. The wear tracks were examined using scanning electron microscopy. Delamination and smearing were the main wear mechanisms on the gray cast iron samples.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Test Strip, Holder, and Gage for Shot Peening

Surface Enhancement Committee
  • Ground Vehicle Standard
  • J442_202002
  • Current
Published 2020-02-27 by SAE International in United States
This SAE Recommended Practice defines requirements for equipment and supplies to be used in measuring shot peening arc height and other surface enhancement processes. Guidelines for use of these items can be found in SAE J443 and SAE J2597.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Shot Peening Conditions on the Fatigue Life of Additively Manufactured A357.0 Parts

SAE International Journal of Materials and Manufacturing

Università degli Studi di Modena e Reggio Emilia, Italy-Andrea Gatto, Antonella Sola
Università degli Studi di Modena e Reggio Emilia, Italy Maserati S.p.A., Italy-Emanuele Tognoli
  • Journal Article
  • 05-13-02-0009
Published 2020-01-09 by SAE International in United States
Fatigue performance can be a critical attribute for the production of structural parts or components via additive manufacturing (AM). In comparison to the static tensile behavior of AM components, there is a lack of knowledge regarding the fatigue performance. The growing market demand for AM implies the need for more accurate fatigue investigations to account for dynamically loaded applications. A357.0 parts are processed by laser-based powder bed fusion (L-PBF) in order to evaluate the effect of surface finishing on fatigue behavior. The specimens are surface finished by shot peening using ϕ = 0.2 and ϕ = 0.4 mm steel particles and ϕ = 0.21-0.3 mm zirconia-based ceramic particles. The investigation proves that all the considered post-processing surface treatments increase the fatigue resistance of as-built parts, but the effect of peening with ϕ = 0.4 mm steel particles or with ceramic particles is more pronounced than that of peening with ϕ = 0.2 mm steel particles, although this treatment has the same Almen A value as the ceramic one. The surface morphology and the crack surface…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Shot Peening Media, Ultrasonically Activated

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS2585A
  • Current
Published 2019-11-04 by SAE International in United States
The complete requirements for procuring the product shall consist of this document and the latest Issue of the basic specification, AMS2431.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Shot Peening, Ultrasonically Activated

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS2580A
  • Current
Published 2019-11-04 by SAE International in United States
This specification covers the requirements for inducing compressive residual stresses on the surface of metal parts using ultrasonically activated shot peening.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High-Carbon Cast-Steel Shot

Surface Enhancement Committee
  • Ground Vehicle Standard
  • J827_201910
  • Current
Published 2019-10-31 by SAE International in United States
This SAE Recommended Practice describes chemical composition and physical characteristic requirements for high-carbon cast-steel shot to be used for shot peening or blast cleaning operations.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on Effect of Laser Peening on Inconel 718 Produced by DMLS Technique

Vellore Institute of Technology-Nattudurai Navin Kumar, Aditya Chandrakant Yadav, Kumar Raja, Subramanian Prabhakaran, Chooriyaparambil Damodaran Naiju, Sivaperuman Kalainathan
Published 2019-10-11 by SAE International in United States
In Additive manufacturing, Direct Metal Laser Sintering (DMLS) is a rapid manufacturing technique used for manufacturing of functional component. Finely powered metal is melted by using high-energy fiber laser, by Island principle strategy that produces mechanically and thermally stable metallic component with reduced stresses, thermal gradients and at high precision. Inconel is an austenitic chromium nickel-based superalloy often used in the applications which require high strength and temperature resistant. It can retain its properties at high temperature. An attempt is made to examine the effect of laser shot peening (LSP) on DMLS Inconel 718 sample. Microstructure shows elliptical shaped structure and formation of new grain boundaries. The surface roughness of the material has been increased due to the effect of laser shock pulse and ablative nature. Macro hardness increased to 13% on the surface. Depth wise microhardness was investigated, found to be 17% increase on the sub-layer of the material due to the effect of a hardened matrix formed by precipitation hardening and grain size refinement attributed by laser shock peening. SEM analysis shows larger…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Appraisal of Tribo Meter Study on 20MnCr5 Alloy Steel under Case Hardened and Shot Peened Condition

Shanthi Gears Limited-Vignesh Nataraj
Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Janarthanan Prakash, Dinu Mathew
Published 2019-10-11 by SAE International in United States
This research is limited to study the strength and wear resistance of 20MnCr5 (SAE 5120) alloy steel under monolithic, case hardened and case hardened with shot peening processing condition. Improve the hardness of the material by enhancing the core and surface strength of case hardened with the shot peened sample. The main objective of this proposed work is to conduct the tribometer test by varying the load of 10, 20, 30 and 40N and sliding speed of 193, 386 rpm respectively on wear rate and coefficient of friction be calculated and recorded for this study. Less wear rate and nominal coefficient of friction were observed for case hardened with the shot peened sample. Load increases wear rate increases and the coefficient of friction decreases when sliding distance increases wear rate decreases and the coefficient of friction increases for all the tested samples due to oxide layer formation. After reaching certain load and sliding speed the curve goes linear because of more contact between pin and disc, so that mechanical amalgamation layer will be formed. On…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Test Strip, Holder, and Gage for Shot Peening

Surface Enhancement Committee
  • Ground Vehicle Standard
  • J442_201906
  • Historical
Published 2019-06-06 by SAE International in United States
This SAE standard defines requirements for equipment and supplies to be used in measuring shot peening arc height and other surface enhancement processes. Guidelines for use of these items can be found in SAE J443 and SAE J2597.
This content contains downloadable datasets
Annotation ability available