Your Selections

Particulate matter (PM)
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Acoustic characteristics prediction and optimization of wheel resonators with arbitrary section

SAIC Motor Corporation Limited-Yimin Sun, Junlei Mao
Tongji University-Rong Guo, Tiantian Mi
  • Technical Paper
  • 2020-01-0917
To be published on 2020-04-14 by SAE International in United States
Tire cavity noise of pure electric vehicles is particularly prominent due to the absence of engine noise, which are usually eliminated by adding Helmholtz resonators with arbitrary transversal section to the wheel rims. This paper provides theoretical basis for accurately predicting and effectively improving acoustic performance of wheel resonators. A hybrid finite element method is developed to extract the transversal wavenumbers and eigenvectors, and the mode-matching scheme is employed to determine the transmission loss of the Helmholtz resonator. Based on the accuracy validation of this method, the matching design of the wheel resonators and the optimization method of tire cavity noise are studied. The identification method of the tire cavity resonance frequency is developed through the acoustic modal simulation and test. A scientific transmission loss target curve and fitness function are defined according to the noise characteristics. Combing the transmission loss prediction theory and particle swarm algorithm, the structure parameters of the wheel resonator are optimized. A remarkable attenuation of tire cavity resonance can be observed through test results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A new efficient combustion method for ICEs

Revolutionary Engines LLC-Peter C. Cheeseman
  • Technical Paper
  • 2020-01-1314
To be published on 2020-04-14 by SAE International in United States
Current methods for combustion in Internal Combustion Engines (ICEs) are: Spark Ignition (SI), Compression Ignition (CI) and Homogeneous Charge Compression Ignition (HCCI). Each of these combustion methods has well known limitations for efficiency and clean exhaust. This paper presents a new method of combustion, called Entry Ignition (EI), that overcomes these limitations. EI burns a homogeneous fuel air mixture at constant pressure with combustion occurring at the inlet where the unburned mixture flows into the combustion chamber. Combustion results from the unburned mixture mixing with the much hotter already burned gases already in the combustion chamber. EI can operate in a conventional piston-type engine, with the only major change being in the valving. EI’s efficiency gain results from the following. Firstly, EI is not subject to “knocking” and so can operate at CI level compression ratios or higher. Secondly, EI allows lean burn, which improves efficiency for basic thermodynamic reasons. Thirdly, an engine that using EI can fully expand the combustion gases (Brayton cycle), and finally, EI has reduced heat loss relative to the other…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Study on the Effect of Debris Location on a Double Element Wing in Ground Effect

Loughborough University-Tom Marsh, Graham Hodgson, Andrew Garmory, Dipesh Patel
  • Technical Paper
  • 2020-01-0693
To be published on 2020-04-14 by SAE International in United States
Multi-element front wings are essential in numerous motorsport series, such as Formula 1, for the generation of downforce and control of the onset flows to other surfaces and cooling systems. Rubber tyre debris from the soft compounds used in such series can become attached to the wing, reducing downforce, increasing drag and altering the wake characteristics of the wing. This work studies, through force balance and Particle Image Velocimetry measurements, the effect a piece of debris has on an inverted double element wing in ground effect. The wing was mounted at a ride height determined to minimise separation from a fixed false-floor in the Loughborough University Large Wind Tunnel. The debris is modelled using a hard-setting putty and is located at different span and chord-wise positions around the wing. The sensitivity to location is studied and the effect on the wake analysed using PIV measurements. The largest effect on downforce was observed when the debris was located on the underside of the wing towards the endplates. The wake was most effected when the debris was…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on thermal management strategy of the exhaust gas of diesel engines based on in-cylinder injection parameters

Tongji University-Piqiang Tan, Lishuang Duan, Erfeng Li, Zhiyuan Hu, Diming Lou
  • Technical Paper
  • 2020-01-0621
To be published on 2020-04-14 by SAE International in United States
Due to high thermal efficiency, reliability and durability, less fuel consumption, and less carbon dioxide (CO2) emission, diesel engines are widely used in both stationary and mobile applications. However, an inherent combustion mode of diesel engines results in harmful emissions like hydrocarbons (HC), carbon monoxide (CO) and particulate matter (PM), the emissions can cause substantial damage to the human health and environment, so there are strict emission regulations to limit the harmful emissions. Diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) are important exhaust gas aftertreatment devices to oxidizing the HC, CO and PM in order to meet the requirements of emission regulations. However, emission regulations become more stringent, the test procedure has been changed from New European Driving Cycle (NEDC) to Worldwide Harmonised Light Vehicle Test Procedure (WLTP), most of the test operating conditions in the WLTP are under medium and low engine loads, so the temperature of exhaust gas of diesel engines is relatively low during the whole WLTP cycle. For the exhaust gas aftertreatment system, especially for the regeneration process of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of different types of glazing on Air- Conditioning system performance of vehicle

Maruti Suzuki India, Ltd.-Akshay Bhateja
  • Technical Paper
  • 2020-01-1249
To be published on 2020-04-14 by SAE International in United States
Due to intense peak summer temperatures and sunny summers in tropical countries like India, achieving the required cabin temperature in vehicle without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is solar load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle Air-Conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as Green, Dark Green, Dark Gray, Standard PVB (Polyvinyl Butyral) Windscreen and PVB Windscreen having Infrared Cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and percentage transmittance of heat flux through each glass. To verify the effectiveness of each glass, vehicle level Air-Conditioning system performance test was done in All Weather Chassis Dyno Facility for each retrofitted vehicle. Retrofitted vehicle configurations were decided as per regional visible light transmittance regulations. To eliminate the effect of manufacturing variance while evaluating…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Pilot Injection and Intake Air Humidification on Combustion and Emission Characteristics of a Marine Diesel Engine in Partially Premixed Low-Temperature Combustion Mode

Tianjin University-Yujie Cai, Ke Wang, Shiru Kong, Zhishang Bian
  • Technical Paper
  • 2020-01-0298
To be published on 2020-04-14 by SAE International in United States
The objective of this study was to investigate combined effects of intake air humidification and pilot injection strategie on performance and emissions of a partially premixed charge compression ignition (PCCI) marine diesel engine. In this research, a three-dimensional numerical model was established by a commercial code AVL-Fire to explore in-cylinder combustion process and pollutant formation factors in a four-stoke supercharged intercooled marine diesel engine under partial load at 1350 rpm. The novelty is that this study is to combine different air humidification ratio with different fuel injection strategies (pilot injection timings and pilot injection quantity), in order to find the optimized way to improve engine performance as well as decrease the NOx-soot emissions and meet the increasingly stringent emissions restriction. The results indicate that as the humidification ratio increases, both of combustion pressure and temperature decrease and the ignition delay becomes longer and combustion phasing is delayed, resulting in a decrease in the combustion thermal efficiency. A high levels of humidification ratio is utilized to reduce overall combustion temperatures and achieve low temperature combustion of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Emissions benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions

Marquette University-Adam Dempsey
University of Wisconsin-Aravindh Babu, Daniel Staaden, Sage Kokjohn
  • Technical Paper
  • 2020-01-0302
To be published on 2020-04-14 by SAE International in United States
This work explores the effectiveness of common rail fuel injectors equipped with Grouped Hole Nozzles (GHNs), in aiding the spray breakup and reducing particulate matter (PM) emissions of Conventional Diesel Combustion (CDC) engines, while maintaining reasonable Oxides of Nitrogen (NOx) levels. Parallel (pGHN), converging (cGHN) and diverging (dGHN) - hole GHNs were studied and the results were compared to a conventional, single hole nozzle (SHN) with the same flow area. Based on an extensive study of the literature, the following parameters are chosen for study: orifice diameter, orifice separation within a group, number of groups, angle between orifices, included angle of the orifices themselves and the boundary conditions (load, injection pressure, intake pressure and Start of Injection (SOI) timing). The study was conducted on a single cylinder medium-duty engine to isolate the effects of the combustion from multi-cylinder effects and the conditions were chosen to be representative of a typical mid-load operating point for an on-road diesel engine. The effects of injection pressure and SOI are explored and the tradeoffs between these boundary conditions are…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel.

Birmingham University-Hongming Xu
CNPC Ji Chai Power Co., Ltd.-Dong Liu
  • Technical Paper
  • 2020-01-0340
To be published on 2020-04-14 by SAE International in United States
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere. Comparing with WD, the soot amount of WDEP decreased for 55% and 27% at 870 K and 920 K. For the case of 920 K and 15.8% of ambient oxygen, the soot amount…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gasoline particulate filter applications for plug-in hybrid and traditional cars

BYD Auto Industry Co., Ltd.-Qinglian Zhang, Yinsheng Liao, Hongzhou Zhang
Corning Co., Ltd.-Lei Zhang, Suhao He
  • Technical Paper
  • 2020-01-1430
To be published on 2020-04-14 by SAE International in United States
Abstract Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) are considered as primary paths in China to meet corporate average fuel consumption (CAFC) credit and new energy vehicle (NEV) credit regulations. Many original equipment manufacturers (OEMs) develop PHEVs based on their internal combustion engine (ICE) base models without significant modification on engine side. Traditional ICE vehicles are solely driven by engines, while PHEVs can be driven by engine or electric motors, independently or together, depending on powertrain architecture and operating strategy. PHEVs may have more PN/PM emissions. To meet CN6 regulation, gasoline particulate filters (GPFs) are widely used for both PHEV and traditional cars. It is important to investigate the impacts of hybrid powertrain on gasoline particulate filter applications. This paper compares GPF application development for a traditional BYD Tang ICE base model and a BYD Tang PHEV model. Same aftertreatment design with slightly different layout is used to cover both models to meet PM/PN/gas emission standards. GPF soot loading and burning behavior are compared. There are more challenges on soot management on…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation Analysis of Early and Late Miller Cycle Strategies Influence on Diesel Engine Combustion and Emissions

Jining Polytechnic-Xiuyuan Li
Tongji University-Shuai Yang, Xiaolin Yang, Haifeng Liu, Zhiwei Feng
  • Technical Paper
  • 2020-01-0662
To be published on 2020-04-14 by SAE International in United States
Based on the working model of a diesel engine, the influence of 2 Miller cycle strategies-Early Intake Valve Closure (EIVC) and Late Intake Valve Closure (LIVC) on the combustion and emissions of diesel engine was analyzed, then the working condition of each Miller cycle strategies on the engine under the rated speed was optimized through the adjust of the valve timing, boost pressure and the injection timing. The research found that both delaying and advancing the closure timing of the intake valve can decrease the pressure and temperature during compression stroke, prolonging the ignition delay. However, due to the decrease of the working media inside the cylinder, the average in-cylinder temperature and soot emissions will increase, which can be alleviated by raising the boost pressure and the resulting compensation of the intake loss. The study found that together with increasing boost pressure and delaying injection timing, both EIVC and LIVC can reduce the NOx and soot emissions simultaneously. The simulation results show that while keeping the peak firing pressure the same as the original machine,…