Your Selections

Optimization
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Optimization of automated airframe assembly process on example of A350 S19 splice joint

Airbus SAS-Elodie Bonhomme, Pedro Montero-Sanjuan
SPbPU-Sergey Lupuleac, Julia Shinder, Maria Churilova, Nadezhda Zaitseva, Valeriia Khashba
  • Technical Paper
  • 2019-01-1882
To be published on 2019-09-16 by SAE International in United States
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
 

Flight Optimization Model on Global and Interval Ranges for Conceptual Studies of MEA Systems

Akita University-Yotsugi Shibuya
IHI Corporation-Hitoshi Oyori, Hirotaka Sugawara, Naoki Seki
  • Technical Paper
  • 2019-01-1906
To be published on 2019-09-16 by SAE International in United States
In development of more electric aircraft applications, it is important to discuss aircraft energy management on various level of aircraft operation. This paper presents a computationally efficient optimization model for evaluating flight efficiency on global and interval flight ranges. The model is described as an optimal control problem with an objective functional subjected to state condition and control input constraints along a flight path range. A flight model consists of aircraft point-mass equations of motion including engine and aerodynamic models. The engine model generates the engine thrust and fuel consumption rate for operation condition and the aerodynamic model generates the drag force and lift force of an aircraft for flight conditions. These models is identified by data taken from a published literature as an example. First, approximate optimization process is performed for climb, cruise, decent and approach as each interval range path. Next, optimization for global range path involves whole flight path to find optimal operation condition in the flight. In aircraft energy management, fuel consumption converts into not only thrust power, but power of…
 

Suppression of Eddy Current Loss in Rectangular Winding of High Power-Density IPMSM Using Concentrated Winding Stator for More Electric Aircraft

Hokkaido University-Sho Manabe, Masatsugu TAKEMOTO
IHI Corporation-Yosuke AKAMATSU, Takehiro JIKUMARU, Fuminori Suzuki, Hitoshi Oyori
  • Technical Paper
  • 2019-01-1910
To be published on 2019-09-16 by SAE International in United States
In order to respond to worldwide environmental problems such as global warming and demands for saving fuel cost of aircrafts from the aviation industry, researches on More Electric Aircraft (MEA) are actively conducted. Conventional hydraulic, pneumatic, and mechanical power sources from aero engines for flight actuators or auxiliary systems are replaced by electric motors in MEA. Interior permanent magnet synchronous motors (IPMSMs) are widely used in various applications for high power density and high efficiency. It is considered that rectangular windings can greatly improve the slot factor, thereby making it possible to increase the power density of IPMSMs. Additionally, in the concentrated winding stator, the coil end can be made shorter than that of the distributed winding stator, which is possible to downsize the stator in the axial direction. In this paper, a high power density concentrated winding IPMSMs which employs rectangular windings for MEA is simulated by 2D-FEA. However, this simulation result reveals that considerable amount of eddy current loss generated in the windings of the motor. Excessive eddy current loss in the windings…
 

Analytical Model for Calibration Results performances enhancement, resulting in automated prescription for equipments

AIRBUS-Juan Manuel García Lasanta
Airbus-Damian MENDEZ-HUELVA
  • Technical Paper
  • 2019-01-1878
To be published on 2019-09-16 by SAE International in United States
The current aeronautical manufacturing sector is characterized by the high level of competence and the required requirement in its production processes, based on the objectives of profitability and safety (airworthiness). In recent years, there is a real revolution in the sector, where the most advanced tools for the organization and optimization of production are given priority, supported by the latest massively used techniques of automatic data collection. , their organized storage and their analytical classification. Metrology plays a key role in ensuring the quality and reliability of the information generated in these productive cycles. The provision of an analytical model of flexible measurement systems, capable and easily adaptable to the dynamics of the company, is presented as one of the pillars in which this new conception of production is based. The provision of an analytical model of flexible measurement systems, capable and easily adaptable to the dynamics of the company, is presented as one of the pillars in which this new conception of production is based. At the Airbus plant in Puerto Real, and in…
 

Simulation of aircraft assembly via ASRP software

Airbus-Elodie Bonhomme
SPbPU-Nadezhda Zaitseva, Tatiana Pogarskaia, Sergey Lupuleac, Olga Minevich, Julia Shinder
  • Technical Paper
  • 2019-01-1887
To be published on 2019-09-16 by SAE International in United States
ASRP (Assembly Simulation of Riveting Process) software is a special tool for modelling assembly process for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the airframe assembly process certain criteria on the residual gap between parts must be fulfilled. The numerical approach realized in ASRP allows one to evaluate the quality of contact on every stage of the assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps and identification of hazardous areas in junction regions.
 
new

Optimizing Cooling Fan Power Consumption for Improving Diesel Engine Fuel Efficiency Using CFD Technique

Tafe Motors and Tractor Ltd., India-Ajay Nain
  • Journal Article
  • 03-12-04-0024
Published 2019-06-11 by SAE International in United States
Fan cooling system of an air-cooled diesel engine is optimized using 3D CFD numerical simulation approach. The main objective of this article is to increase engine fuel efficiency by reducing fan power consumption. It is achieved by optimizing airflow rates and flow distribution over the engine surfaces to keep the maximum temperature of engine oil and engine surfaces well within the lubrication and material limit, respectively, at the expense of lower fan power. Based on basic fan laws, a bigger fan consumes lesser power for the same airflow rate as compared to a smaller fan, provided both fans have similar efficiency. Flow analysis is also conducted with the engine head and block modeled as solid medium and fan cooling system as fluid domain. Reynolds-averaged Navier-Stokes turbulence (RANS) equations were solved to get the flow field inside the cooling system and on the engine liner fins. The Moving Reference Frame approach was used for simulating the rotation of a fan. Cowl geometry was modified for providing better guidance to flow over engine surfaces and to get…
 
new

Aero-Engine Inlet Vane Structure Optimization for Anti-Icing with Hot Air Film Using Neural Network and Genetic Algorithm

Beihang University-Jie Liu, Peng Ke
Published 2019-06-10 by SAE International in United States
An improved anti-icing design with film heating ejection slot and cover for the inlet part of aero-engine was brought out, which combines the interior jet impingement with the exterior hot air film heating and shows promising application for those parts manufactured with composite materials. A hybrid method based on the combination of the Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA) is developed to optimize the anti-icing design for a typical aero-engine inlet vane in two dimensions. The optimization aims to maximize the heating performance of the hot air film, which is assessed by the heating effectiveness. The film-heating ejection angle and the cover opening angle are the two geometric variables to be optimized. Numerical model was established and validated to generate training and testing samples for BPNN, which was used to predict the objective function and find the optimal design variables in conjunction with the GA. The optimal values of the film-heating ejection angle and the cover opening angle were 24.3° and 5°, respectively, which were achieved at a given heat flow rate…
Datasets icon
Annotation icon
 
new

Process Regulations and Mechanism of WEDM of Combustor Material

National Institute of Technology, Kurukshetra, India-Bhupinder Singh, Joy Prakash Misra
  • Journal Article
  • 01-12-01-0004
Published 2019-06-07 by SAE International in United States
This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Datasets icon
Annotation icon
 
new

Optimal Pressure Relief Groove Geometry for Improved NVH Performance of Variable Displacement Oil Pumps

Ford Motor Company-Abdelkrim Zouani, Vidya Marri
Published 2019-06-05 by SAE International in United States
Variable Displacement Oil Pump (VDOP) is becoming the design of choice for engine friction reduction and fuel economy improvement. Unfortunately, this pump creates excessive pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the lubrication system and leading to the generation of objectionable tonal noises and vibrations. In order to minimize the level of noise, different vanes spacing and porting geometries are used. Moreover, an oil pressure relief groove can be added, at the onset of the high pressure port, to achieve this goal.This paper presents an optimization method to identify the best geometry of the oil pressure relief groove. This method integrates adaptive meshing, 3D CFD simulation, Matlab routine and Genetic Algorithm based optimization. The genetic algorithm is used to create the required design space in order to perform a multi-objective optimization using a large number of parameterized groove geometries. Results of this optimization method are discussed and a design guideline for the oil pressure relief groove is disclosed.
Datasets icon
Annotation icon
 
new

Design Optimization of Differential Bevel Gear for NVH Improvement

American Axle & Manufacturing-Zhenghong Shi, Jui Chen, Mohsen Kolivand, Zhaohui Sun, Gregory Kopp, Ying Peng
Published 2019-06-05 by SAE International in United States
With fast pacing development of automobile industry and growing needs for better driving experience, NVH performance has become an important aspect of analysis in new driveline product development especially in hybrid and electric powered vehicles. Differential bevel gear has significant role in the final drive. Unlike parallel axis gears such as spur or helical gear, bevel gear mesh shows more complicated characteristics and its mesh parameters are mostly time-varying which calls for more extensive design and analysis. The purpose of this paper is to conduct design study on a differential bevel gear unit under light torque condition and evaluate its NVH characteristics. Unloaded tooth contact analysis (UTCA) of those designs are conducted and compared for several design cases with different micro geometry to investigate their pattern position and size variation effects on NVH response. Loaded tooth contact analysis (LTCA) that is based on semi-analytical and semi-FE method is used to compare other mesh parameters such as mesh point, line-of-action (LOA) and mesh stiffness. For experimental study, several 11x16 gear pairs are tested at multiple gear…
Datasets icon
Annotation icon