Your Selections

Metallurgy
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Metallic Whiskers

AMS B Finishes Processes and Fluids Committee
  • Aerospace Standard
  • AIR4129A
  • Current
Published 2019-10-17 by SAE International in United States
This AIR presents an abbreviated review of the metallurgical phenomena known as whiskers. It is not all encompassing; rather, it is intended to introduce the design engineer to the technical issues of metallic whiskers, their formation, and the potentially dangerous problems they can cause.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

Vellore Institute of Technology-Mathiyazhagan Sathishkumar, Chooriyaparambil Damodaran Naiju, Manoharan Manikandan
Published 2019-10-11 by SAE International in United States
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal. The development of secondary precipitates in the weld zone affected the tensile properties of the weld joint.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Mechanical and Metallurgical Analysis of HSLA Steel for Gas Tungsten Arc Welding with Different Shielding Gases

CSI College of Engineering-Dhanraj Gurusamy, Prashanth Murthy, Senthilkumar Ramakrishnan, Sivakumar Nanjappan
Sri Krishna College of Engineering and Technology-Soundararajan Ranganathan
Published 2019-10-11 by SAE International in United States
The special designed HSLA (High Speed Low Alloy) Steel is most commonly used in Naval Steel Structures and aircraft structures due to its indigenous properties. The aim of this paper is used to investigate the effect of shielding gases in the Gas Tungsten Arc Welding process. DMR 249A [HSLA] plates were welded by GTAW by using helium and argon as shielding gas with a flow rate of 16 L/min, the interpass temperature is 140 degree Celsius and the heat input is less than 1.2KJ/min where the impact toughness, Tensile and micro hardness was studied with different shielding gas and the metallurgical properties were analysed in the base metal, heat affected zones and weld zones. A detailed study has been carried out to analyze the elements using Scanning Electron Microscopy and Energy Dispersive Spectroscopy (EDS) analysis. The properties of the high speed low alloy steel carried out reveals a better mechanical properties suitable in naval applications.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Metallurgical and Wear Behaviour of Stellite 6 Reinforced Stainless Steel 316 Joints by Nd-YAG Laser Welding Process

BSACIST-Varun Kumar Arulvizhi, Selvakumar Alandur Somasundaram, Balasrinivasan Murugan, Ravikumar Natarajan
Renault & Nissan-Abdur Rahman Kalam
Published 2019-10-11 by SAE International in United States
Laser welding process is a most effective and predominant method for joining of steel alloys when compared with other welding processes in practice due to their precise control of laser source across the bonding zone where it is crucial to control in other joining processes. In common the austenitic steels differ from ferritic based on two factors, thermal conductivity and expansion. Here, the selected Nd-YAG laser setup for joining of similar base material stainless steel 316 which is reinforced with and without stellite 6 powders. The experimental investigations (metallurgical survey and wear characteristics) were performed on all the samples. The powders were reinforced in the material directly by performing a drill across the bond line instead of a normal coating process which is in practice, later the powders were stuffed through the holes. Totally four samples were processed by varying the process parameters such as laser power (W), laser frequency (Hz) and keeping the time (s), feeding rate (mm/s) as constant. During the joining process the powders will get solidified with the molten steel alloy.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advances in Laser Welding of Stainless Steel Alloys

BSACIST-Varun Kumar Arulvizhi, Selvakumar Alandur Somasundaram, Mohammed Haareeskhan Niyaz, Pradeep Krishna Ranganathan, Afnan Zaid Moolai, Mohamed Ashfaq Ahmed Abdulla Burhanudeen, Mohan Raj Ramu
Published 2019-10-11 by SAE International in United States
As a fusion welding process, Laser welding has proven to be the most promising method for joining of different materials whether it can be either a similar or dissimilar material category. However, few complications still remain unanswered in joining of materials by laser process after successful implementation of laser’s by industries and also the commercial users in previous year’s such as workpiece preparation, fixture issues, atmospheric conditions, nozzle focus on the material, etc., This article will give an elaborate survey on joining of stainless steel alloys, though there are many factors to be considered here concentration is on the metallurgical behaviour and tensile properties of weldments joined by laser welding technique, because the main criteria for a weldment is to have a coarse grain boundary distribution which may be distorted due to high heat generation during a joining process and to possess good tensile strength in order to withstand the impacts given on the weldment when it is being practically deployed in usage. The material behavior of weldment is primarily based on the process parameters…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

Hawassa University-Sivan Rajkumar
KPR Institute of Engg and Technology-Balasubramanian Arulmurugan
Published 2019-10-11 by SAE International in United States
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Deriving Strain Based Local Structural Element Concept for the Fatigue Assessment of Additively Manufactured Structures

Fraunhofer Institute LBF-Rainer Wagener, Benjamin Möller, Tobias Melz, Matilde Scurria
Published 2019-04-02 by SAE International in United States
Additive manufacturing offers new options for lightweight design for safety parts under cyclic loading conditions. In order to utilize all advantages and exploit the full potential of additive manufactured parts, the main impact factors on the cyclic material behavior not only have to be identified and quantified but also prepared for the numerical fatigue assessment. This means in case of the AlSi10Mg aluminum alloy to consider influences related to the exposure strategy, heat treatment, microstructure, support structures and the surface conditions, as well as the influence of the load history and finally the interaction of these influences in order to perform a high quality fatigue assessment. Due to these reasons, and with respect to the numerical effort, the cyclic material behavior of additively manufactured AlSi10Mg produced by selective laser melting will be discussed. With respect to the microstructure, as well as the manufacturing process, a local structure element will be derived for the fatigue assessment. Thus, an influence that may be directly induced by the manufacturing process, like pores and different microstructures, can be considered…
Annotation ability available

Facility Focus: Battelle Memorial Institute

  • Magazine Article
  • TBMG-34159
Published 2019-04-01 by Tech Briefs Media Group in United States

Battelle Memorial Institute was founded in the early part of the 20th century as a charitable trust focused on research in metallurgy and allied industries. Founder Gordon Battelle studied metallurgy at Yale and strongly believed that science could help businesses solve their problems. In 1923, Battelle died and left $1.5 million to create Battelle Memorial Institute for the purpose of education and for making discoveries and inventions. In 1929, Battelle opened for business in Columbus, OH.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study of Temperature Distribution and Parametric Optimization during FSW of AA6082 Using Statistical Approaches

SAE International Journal of Materials and Manufacturing

National Institute of Technology Kurukshetra, India-Shubham Verma, Joy Prakash Misra, Meenu Gupta
  • Journal Article
  • 05-12-01-0005
Published 2019-02-01 by SAE International in United States
In this article, Al-Mg-Si-Mn alloy (AA6082) is butt joined by employing friction stir welding (FSW). The mechanical and metallurgical properties of joints are analyzed by conducting tensile and microhardness testing, respectively. To measure the temperature at different locations, eight thermocouples (L-shaped k-type) are placed at equal distance from the centerline. Least square method attempts to calculate the temperature at the centerline of joints. The process parameters are also optimized using Taguchi’s five-level experimental design. The optimum process parameters are determined, employing ultimate tensile strength (UTS) as a response parameter. A statistical test “analysis of variance” is used to check the adequacy of the model. It has been observed that rotational speed and feed rate are the predominant factors for UTS and microhardness. Optical microscopic and electron backscatter diffraction analyses are carried out to obtain the macrostructure and microstructure of joints.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Manufacturing of Transmission Quill Gear by Sinter Hardening

Mahindra & Mahindra Ltd.-Magendran Gunalan, Rahul Deshmukh, Uttam Bane
Published 2019-01-09 by SAE International in United States
Transmission quill gears are hot forged steel parts often used in constant mesh manual transmissions. The quill gear, which helps to transmit the power from input drive shaft to output shaft through driving gears. It’s having external teeth which is positively engaged with driving gear and sleeve. During gear selection sleeve take load from input shaft and transmit to driven gear.Quill gear directly engaged with driving gears on outer surface and bearing in inner surface which needs to have high strength and durability. These properties can be improved by carburization heat treatment in existing design such processes can lead to increased costs. We have developed quill gear through powder metallurgical process and then cooled rapidly in the furnace to get high strength and wear properties. Material composition are optimized to suit for sinter hardening process conditions. Thus, we have succeeded in the development of quill gears via sinter hardening, thus eliminating the forging and second hardening process. This paper will have detailed discussion on material chemical composition, sinter hardening process, mechanical and metallurgical properties comparison…
This content contains downloadable datasets
Annotation ability available