The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Manufacturing systems
Show Only


File Formats

Content Types










   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Sustainability Assessment of Lightweight Concept for an Automotive Car Module

Benteler-Joern Toelle
Toyota Motor Europe-Martin Kerschbaum
  • Technical Paper
  • 2020-37-0033
To be published on 2020-06-23 by SAE International in United States
Recently sustainability has become a priority for industry production. This issue is even more valid for the automotive sector, where Original Equipment Manufacturers have to address the environmental protection additionally to traditional design issues. Against this background, many research and industry advancements are concentrated in the development of lightweight car components through the application of new materials and manufacturing technologies. The paper deals with an innovative lightweight design solution for the bumper system module of a B-segment car. The study has been developed within the Affordable LIght-weight Automobiles AlliaNCE (ALLIANCE) project, funded by the Horizon 2020 framework programme of the European Commission. A bumper demonstrator, that is currently in series production and mainly consists of conventional aluminum materials, is re-engineered making use of 7000 series aluminum alloys. The design alternatives are described and assessed regarding the achieved weight saving. The study is complemented by a sustainability assessment of the different modules performed through the Life Cycle Assessment methodology. The analysis takes into account production, use and End-of-Life stages and the results are expressed in terms…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Acoustic Material Concept Integration Into Vehicle Design Process

Odenwald-Chemie GmbH-Michael Feist-Muench
dBVibroAcoustics-Denis Blanchet
  • Technical Paper
  • 2020-01-1527
To be published on 2020-06-03 by SAE International in United States
Integration of acoustic material concepts into vehicle design process is an important part of full vehicle design. The ability to assess the acoustic performance of a particular sound package component early in the design process allows designers to test various designs concepts before selecting a final products. This paper describes an innovative acoustic material concept which is easily integrated in a design process through the use of a database of Biot parameters. Biot parameters are widely used in the automotive industry to describe the physical interactions between the acoustics waves travelling through foams, fibers or metamaterials and the solid and fluid phase of these poro-elastic materials. This new acoustic material concept provides a combination of absorption, transmission loss and added damping on the panel it is attached to. It has shown unique vibro-acoustics performance when tested on a German car manufacturer flagship vehicle and provides the ability to reduce the space needed for sound package component compared with classical solutions.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Variable Geometry Fin in Automotive Condenser using Analytical and CFD Approach

Mahindra & Mahindra, Ltd.-Ram Anandan
  • Technical Paper
  • 2020-28-0028
To be published on 2020-04-30 by SAE International in United States
Due to stiff competition among the Original Equipment Manufacturer (OEM's), the Comfort, Fuel efficiency & Safety are the key factors that drive the vehicle business, from that context Air Conditioning for a car plays a pivotal role in the area of comfort of the passengers and fuel efficiency point of view. In addition, condenser plays a pivotal role in Power train cooling system & air conditioning system. Therefore, it is a big challenge for the automotive engineer to propose an innovative design that can improve the thermal performance of Condenser without not compromise the package size. Also, it's a challenge for the OEM's to select the optimal heat exchanger from the supplier basket during the design phase of product development cycle. The objective of this paper to focus on analytical calculation or frame work was developed using excel tool considering the variable geometry of fin which includes louver pitch, louver angle and louver length in a multi-pass condenser. Further this theoretical calculation was validated using experimental data and CFD simulation. This theoretical excel tool can…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reducing Cycle Times of Refill Friction Stir Spot Welding in Automotive Aluminum Alloys

Brigham Young University-Brigham Larsen, Yuri Hovanski
  • Technical Paper
  • 2020-01-0224
To be published on 2020-04-14 by SAE International in United States
A major barrier, preventing RFSSW from use by manufacturers, is the long cycle time that has been historically associated with making a weld. In order for RFSSW to become a readily implementable welding solution, cycle times must be reduced to an acceptable level, similar to that of well developed, competing spot joining processes. In the present work, an investigation of the RFSSW process is conducted to evaluate factors that have traditionally prevented the process from achieving fast cycle times. Within this investigation, the relationship between cycle time and joint quality is explored, as is the meaning and measurement of cycle time in the RFSSW process. Claims and general sentiment found in prior literature are challenged regarding the potential for high-speed RFSSW joints to be made. The RFSSW weld design-as described by process parameters such as tool feed rate, tool rotational velocity, and plunge depth- is shown through experimentation to affect the loads and torques placed on RFSSW tooling and machines during the welding process. As cycle time is decreased, the load and torque on the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.


University Of Detroit Mercy-Mostafa Mehrabi
University Of Detroit Mercy-Jonathan Weaver
  • Technical Paper
  • 2020-01-0487
To be published on 2020-04-14 by SAE International in United States
performance and productivity. Tracking faults in a typical manufacturing system is inherently an inverse problem which makes it more challenging and difficult to solve. Presented in this article is the development of a new methodology for fault identification and root-cause analysis of complex assembly systems. A combination of a knowledge-based system and fuzzy set theory is used to develop this new technique, which is an intelligent system that mimics the behavior of an expert in the field, and can trace back the source(s) of the fault to the relevant station. Examples from real assembly operations are provided to show the effectiveness of this approach.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Android Defense in Depth Strategy in an Automobile Ecosystem

Automotive Accessories-Nalinikanth Yerram
Embedded Systems Software & Security-Srinivas Chandupatla
  • Technical Paper
  • 2020-01-1365
To be published on 2020-04-14 by SAE International in United States
Android is becoming an environment of choice in the automotive sector because of near production grade open source stack availability and large developer community. With growing interest from Automotive OEMs for Android IVI (In-Vehicle Infotainment) solutions, we predict a similar growth trend in an automobile like in Mobile space. At another end, the need for more interconnected devices within the Automobile ecosystem is increasing, which leads to an increased threat to security. In sophisticated device interconnections, identifying the gateways and implementing the right security strategy is key to improve overall system security & stability. While Android is maturing for automotive and with growing interest from automotive OEMs, we spent time in analyzing current Android defense-in-depth concepts with the automotive perspective. The main aim of this paper is to examine the current defense-in-depth strategies available in Android and propose additional measures to meet automotive needs. This paper shall aid OEM’s to consider proposed strategies for their Android IVI solutions for increased security & safety.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Virtual Verification of Light Reflection for Cluster and Side Mirror in Real Time Scenario

VE Commercial Vehicles Ltd.-Manas Bhatnagar, Jyotiranjan Biswal, Saurabh Sharma
  • Technical Paper
  • 2020-01-0568
To be published on 2020-04-14 by SAE International in United States
In the very automobile world trends are changing at a very fast pace, due to continuous expectation changes by user and new regulatory requirements demand from government authorities with a very stringent timeline.In the current scenario, manufacturer has to wait for mock up for concept selection and physical proto build to conclude open points of design verification. This complete process takes more than a year to enhance the design maturity for further builds.In VECV we have created Cluster design standard to meet different level of cluster illumination & reflection at virtual level. We are defining the cluster light illumination based on our rigorous study on cluster reflection impact on side glass, windscreen and mirror. Accordingly we have packaged our mirror to minimize the impact of cluster reflection on mirror visibility.With the help of virtual verification of cluster and Side mirror inter co-relation of packaging, we significantly reduced the time loss and save huge cost required for developing proto build. Different options of mirror and cluster can be verified in quick session. With the help of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

Chang’an University-Shaobo Zhang
Clemson University-Yunyi Jia
  • Technical Paper
  • 2020-01-1303
To be published on 2020-04-14 by SAE International in United States
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors. However, the real-time modeling and calculation of multiple human capabilities and real-time adaptive task distribution in flexible MH-MR manufacturing according to human capabilities are still challenging due to the complexity of human capabilities and heterogeneous multi-agent interactions. To address these issues, this paper first proposes…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic Optimization of Vehicle Configuration Based on Adjoint Method

ANSYS Inc.-Tushar Jadhav
SAIC Volkswagen Automotive Co., Ltd.-Chao Ren, Hua Zhou, Haibo Wu, Qian Chen
  • Technical Paper
  • 2020-01-0915
To be published on 2020-04-14 by SAE International in United States
Due to the increasingly stringent environmental regulations all around the world confronted by exhaust emission and energy consumption, improving fuel economy has been the top priority for most automotive manufacturers. In this context, the basic process for vehicle shape development has evolved into optimizing the design to achieve better aerodynamic characteristics, especially drag reduction. Of all the optimization approaches, the gradient-based adjoint method has currently received extensive attention for its high efficiency in calculating the objective sensitivity with respect to geometry parameters, which is the first and foremost step for subsequent shape modification.In this work, the main goal is to explore the adjoint method through optimizing the vehicle shape for a lower drag based on a production SUV. Firstly, the influence of different mesh schemes was discussed on sensitivity prediction of aerodynamic drag. Secondly, according to the sensitivity distribution, several key areas, like the side mirrors, A pillars, air dam, and rear lamps, were respectively altered through mesh morphing process. Furthermore, the optimized effect was validated by steady as well as transient simulation. Steady Reynolds…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Passenger and Light Truck Tire Traction Device Profile Determination and Classification

Highway Tire Committee
  • Ground Vehicle Standard
  • J1232_202003
  • Current
Published 2020-03-11 by SAE International in United States
The purpose of this SAE Recommended Practice is to set up a guide as to body, frame, and wheelhouse clearances required to accommodate tire traction devices (e.g., tire chains), and to provide a means of classifying these devices according to their maximum profile. In addition, it enables the vehicle manufacturer to specify the proper traction devices for each vehicle. This report is intended to apply to passenger cars and light trucks up to 4535 kg (10 001 lb) GVW. This document is not to be construed as approving traction device operation at conditions exceeding manufacturer's specifications, although short periods of such operations may be required for test purposes.
Annotation ability available