The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Lubricating oils
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of the Compression Chamber and Optimization of the Sealing of a Novel Rotary Internal Combustion Engine using CFD

Aristotle University of Thessaloniki-Savvas S. Savvakis, Elias Nassiopoulos, Dimitrios Mertzis, Zissis Samaras
  • Technical Paper
  • 2020-37-0007
To be published on 2020-06-23 by SAE International in United States
The increasing demand for lower fuel consumption and pollutant emissions favours the development of novel engine configurations. In line with this demand, the present contribution aims to investigate the sealing performance of a new concept rotary split-engine with a very promising thermal efficiency, a very low NOx emissions' level, and a much higher power density than any conventional internal combustion engine can. It uses the Atkinson cycle, a low-temperature combustion process and when it uses two pistons, symmetrically positioned around its shaft, it gives one power stroke every 180 degrees. The main focus of this work is to provide all the steps followed so far in order to ensure an efficient sealing and operation of the compression process of this engine, including the 1D & CFD simulations, CAD design & optimisation, and experimental campaign for verifying the digital results. The so-far investigation and experiments conclude that this new rotary engine can work with no oil lubrication inside the compression chamber and with much lower mechanical losses compared to the existing reciprocating engines.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Studying Ignition Delay Time of Lubricant Oil Mixed with Alcohols, Water and Toluene in IQT and CVCC

Abu Dhabi Polytechnic-Hatsari Mitsudharmadi
King Abdullah University of Science & Technology-Sumit Maharjan, Ayman Elbaz, William Roberts
  • Technical Paper
  • 2020-01-1422
To be published on 2020-04-14 by SAE International in United States
The auto-ignition of liquid fuel and lubricant oil droplets is considered as one of the possible sources of pre-ignition. Researchers are continually finding new ways to form advanced lubricant oil by changing its composition and varying different oil additives to prevent the occurrence of this event. This study investigates additives for lubricants to suppress its auto-ignition tendency. Three sets of mixtures were prepared. The first set of mixtures were prepared by adding different alcohols namely ethanol, and methanol to the commercial lubricant oil (SAE 15W-40) in ratio of 1 - 5 % by vol The second set of mixtures were prepared by mixing SAE 15W-40 with aforementioned alcohols (1 % vol.) and H2O (1 % vol.). Lastly, the third set of mixtures were prepared by adding toluene to SAE 15W-40 in (1 % - 5% by vol.). Two experimental setups were used in the current work. An Ignition Quality Tester (IQT) was used to investigate the mixtures’ ignition delay time (IDT) following standard ASTM D6890 procedure, and a larger constant volume combustion chamber (CVCC) was…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

Politecnico di Milano-Gianluca Montenegro, Matteo Tamborski, Augusto Della Torre
Universita Degli Studi di Genova-Silvia Marelli
  • Technical Paper
  • 2020-01-1010
To be published on 2020-04-14 by SAE International in United States
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.In the paper the main results of a wide experimental activity are reported to provide a general understanding of heat transfer mechanism occurring in turbochargers and relationships for heat transfer rate useful to derive the adiabatic efficiency. The compressor steady flow performance maps were measured at different operating temperatures for compressor and turbine, with and without…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

Aramco Research Center-Tom Tzanetakis, Mark Sellnau, Vincent Costanzo, Michael Traver
Argonne National Laboratory-Aniket Tekawade, Brandon Sforzo, Christopher F. Powell
  • Technical Paper
  • 2020-01-0616
To be published on 2020-04-14 by SAE International in United States
In this study, a 500-hour test cycle was used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the hardware were modified from their baseline design in order to accommodate an opposed-piston, two-stroke engine application and mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved. Although evidence of vapor formation in the low-pressure part of the system was observed, there was no significant physical damage to the associated components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle tips and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion. Despite the lack of lubricity-improving additives in the gasoline, all other fuel-wetted components survived the test cycle without any…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

Tianjin University-Yuqian Wang, Yiqiang Pei, Jing Qin, Lili Lu, Xiang Li, Zhenshan Peng
  • Technical Paper
  • 2020-01-1429
To be published on 2020-04-14 by SAE International in United States
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Role of NOx in Engine Lubricant Oxidation

Infineum UK, Ltd.-David R. Coultas
  • Technical Paper
  • 2020-01-1427
To be published on 2020-04-14 by SAE International in United States
Fuel economy trends like engine downsizing and reduced piston ring tension have created challenging environments for modern engine oils which are expected to deliver more from less. Downsizing has led to smaller sumps meaning longer contact times of the lubricant with NOx in blow-by gasses. Fuel economy requirements have also demanded greater engine efficiency with increasing sump temperatures and blow-by rates due to reduced ring tension. These trends promote nitro-oxidation driven by the action of NOx and air on the lubricant. Nitro-oxidation has often been overlooked as a mechanism of oil oxidation in real world engines. Indeed, in bench oxidation tests purporting to protect modern engines against lubricant oxidation, the emphasis is almost exclusively on iron catalysed oxidation. This paper will show that a simple bench nitro-oxidation test is capable of reproducing trends in nitrate ester formation and consumption seen in real engines and demonstrate that lubricant oxidation and viscosity increase is accounted for by the action of NOx without the use of iron catalysts. This demonstrates that the initiation of lube oil oxidation in…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Elucidation of the Sulfide Corrosion Mechanism in Piston Pin Bushings

Honda R&D Co., Ltd.-Ryuta Motani, Kazuki Maeyama, Kenta Yoshii, Shinji Oshida, Hiroki Masuda, Tomohiro Ikeda, Tatsuya Okayama, Shinichi Takahashi
  • Technical Paper
  • 2020-01-1079
To be published on 2020-04-14 by SAE International in United States
Recent trends to downsize engines have resulted in lighter weight and greater compactness. At the same time, however, power density has increased due to the addition of turbocharger and other such means to supplement engine power and torque, and this has increased the thermal and mechanical load. In this kind of environment, corrosion of the copper alloy bushing (piston pin bushing) that is press-fitted in the small end of the connecting rod becomes an issue. The material used in automobile bearings, of which the bushing is a typical example, is known to undergo sulfidation corrosion through reaction with an extreme-pressure additive Zinc Dialkyldithiophosphate (ZnDTP) in the lubricating oil. However, that reaction path has not been clarified. The purpose of the present research, therefore, is to clarify the reaction path of ZnDTP and copper in an actual engine environment. In order to ascertain the effects of the heat, copper content, and state of deterioration of the oil on corrosion, component corrosion tests were conducted. The results of the component corrosion tests suggested that the main factor…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Role of Lubricating Oil Properties in Exhaust Particle Emissions of an Off-Road Diesel Engine

Neste Corporation-Kari Kulmala
Tampere University-Panu Karjalainen, Topi Rönkkö, Jorma Keskinen
  • Technical Paper
  • 2020-01-0386
To be published on 2020-04-14 by SAE International in United States
Particle number emissions from an off-road diesel engine without exhaust after-treatment were studied by using five different heavy-duty lubricating oils in the engine. The study extends understanding on how the properties of lubricating oil affect the nanoparticle emissions from an off-road diesel engine. The lubricants were selected among the performance classes of the European Automobile Manufacturers Association, at least one lubricant from each category intended for heavy-duty diesel engines. Particle size distributions were measured by the means of an engine exhaust particle sizer (EEPS), but soot emissions, gaseous emissions and the basic engine performance were also determined. During the non-road steady state cycle, the most of the differences were detected at the particle size range of 6-15 nm. In most cases, the lowest particle quantities were emitted when the highest performance category lubricant was used. Based on the results of this study, the low contents of Zn, P, and S in lubricating oil contributed to the reduced emission factors for engine-out nucleation mode particles at any load. In addition, the low content of sulfate ash…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

Maruti Suzuki India, Ltd.-Bhupinder Singh, Ved Prakash Choudhary, Arun Kumar, Chandan chopra
  • Technical Paper
  • 2020-01-1089
To be published on 2020-04-14 by SAE International in United States
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in Car Transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage. CFD simulation of Transmission is challenging due to interaction of fluid and multiple gears/shafts rotating at high speed. It is also complex as lubrication is done only by splash generated by gears and oil flow thru narrow galleries further…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of Piston-Ring System for Reducing Lube Oil Consumption by CAE approach

Engine Analysis-Guoxi Jing
Jiangling Motors Co., Ltd.-Ruigang Miao, Xiaochun Zeng
  • Technical Paper
  • 2020-01-1339
To be published on 2020-04-14 by SAE International in United States
Lube Oil Consumption (LOC) of one diesel engine has been found to be high. To resolve this problem, CAE analysis has been applied to analyze the piston motion, dynamics of piston ring, and characteristics of oil consumption. The root cause has been identified through CAE. The improved understanding has been applied to optimize the piston and piston ring. The optimized components have been tested. The experiment results are in good agreement with CAE predictions, and the oil consumption has been improved.