Your Selections

Logistics
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Investigation into the benefits of implementing a fully integrated MRO Software system in Airlines Maintenance and Engineering

SORT Engineering GmbH-Adel A. Ghobbar
  • Technical Paper
  • 2019-01-1908
To be published on 2019-09-16 by SAE International in United States
Case studies of various MRO organizations were researched in order to gain a better understanding of the business procedures used in each department of an aircraft maintenance company. The software systems available to aid business processes were researched to understand the computer processes, functions and operational requirements of these software programs. The planning and scheduling of inventory and manpower resources is complex and requires various parameters to be computed by the software systems in order to adequately plan the necessary aircraft maintenance resources. Case studies of aircraft maintenance companies that previously implemented integrated IT software solutions to control and monitor department functions were researched to identify and understand the various problems encountered by these companies during the software implementation phase. Understanding the problems that could potentially occur during the implementation is necessary to ensure similar mistakes are not repeated. The improvements and gains to efficiency that can be expected once the integrated IT system is operational were also considered. The work flow processes in the Brussels Airlines MRO Stores (incoming inspection) and Maintenance Planning departments…
 
new

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

NASA Glenn Research Center-Ashlie Flegel, Michael King
Vantage Partners Limited-David L. Rigby, William Wright
Published 2019-06-10 by SAE International in United States
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan. A distribution of particle sizes is introduced upstream, based on the distribution measured during the test. Predicted collection…
Datasets icon
Annotation icon
 
new

Standard Practice for Production, Distribution, and Procurement of Metal Stock

AMS G Titanium and Refractory Metals Committee
  • Aerospace Standard
  • AS6279B
  • Current
Published 2019-06-10 by SAE International in United States

This SAE Aerospace Standard (AS) establishes requirements applicable to metal stock that is ordered and produced in accordance with an Aerospace Material Specification (AMS). Topics include producer requirements, distributor requirements, size and grain orientation nomenclature, and purchaser ordering information to distributors. Requirements of this document have been developed to address titanium and titanium alloys, aluminum and aluminum alloys, carbon and alloy steels, and corrosion and heat-resistant alloys.

 
new

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

AMA-NASA Langley Research Center-Justin Strickland, Patricia Hunt
FAA William J. Hughes Technical Center-Christopher Dumont
Published 2019-06-10 by SAE International in United States
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida. Ten research flights were made into deep convective systems that included Mesoscale Convective Systems (MCS) near the Gulf of Mexico and Atlantic Ocean, and Tropical Storms Danny and Erika near the Caribbean Sea. The radar and in-situ measurements from these ten flights were analyzed…
Annotation icon
 
new

Numerical Modelling of Primary and Secondary Effects of SLD Impingement

ANSYS Inc.-Habibollah Fouladi, Guido S. Baruzzi, Shezad Nilamdeen, Isik Ozcer
Published 2019-06-10 by SAE International in United States
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage. Since the performance characteristics of twin-engine commercial turboprops are such that they operate most efficiently at flight levels where SLD encounters may occur, the goal of this article is to establish a 3D computational methodology to eventually enable a complete study of the impact of FAR 25 Appendix O on the IPS requirements for this class of airplanes. The Appendix O icing conditions used for the demonstration of the methodology are set for a turboprop in a typical holding pattern at 6,000 ft, 190 kts,…
Datasets icon
Annotation icon
 
new

An Eulerian Approach with Mesh Adaptation for Highly Accurate 3D Droplet Dynamics Simulations

ANSYS Inc.-Isik Ozcer, Guido Baruzzi
Bombardier-Alberto Pueyo
Published 2019-06-10 by SAE International in United States
Two main approaches are available when studying droplet dynamics for in-flight icing simulations: the Lagrangian approach, in which each droplet trajectory is integrated until it impacts the vehicle under study or when it leaves it behind without impact, and the Eulerian approach, where the droplet dynamics is solved as a continuum. In both cases, the same momentum equations are solved.Each approach has its advantages. In 2D, the Lagrangian approach is easy to code and it is very efficient, particularly when used in combination with a panel method flow solver. However, it is a far less practical approach for 3D simulations, particularly on complex geometries, as it is not an easy task to accurately determine the droplet seeding region without a great number of droplet trajectories, dramatically increasing the computing cost. Converting the impact locations into a water collection distribution is also a complex task, since droplet trajectories in 3D can follow convoluted paths. One of the advantages of the Lagrangian approach is the crisp definition of the shadow zone as it is clearly defined by…
Datasets icon
Annotation icon
 
new

Role of Dynamic Stiffness in Effective Isolation

Deere & Company-Yuzhen Yang
John Deere India Pvt, Ltd.-Balavardhan Reddy Dasabai
Published 2019-06-05 by SAE International in United States
In any machinery, avoiding noise and vibration completely is a difficult task due to the structural dynamic behaviors of components. To safeguard the operator, it is important to best isolate the operator station from NVH environment. Cabin isolation is an important aspect to minimize structure borne noise and tactile vibrations to be transferred into the cabin. Isolators are selected based on the isolation system inertial properties at mounting locations in the operating frequency range interested. The most important assumption to select isolators are that the active side and passive side of the isolators are nearly rigid so impedance mismatch is created for effective isolation.This paper describes the importance of dynamic stiffness of the structures on both the active and passive side for better NVH performance. NVH performance of passive side is evaluated analytically and computationally in terms of tactile vibrations and structure borne noise for various ratios of the dynamic stiffness over isolator stiffness. The isolator selection criterion is also discussed based on rigid body modes, operating frequency range, transmissibility ratio, and kinematic energy distributions.
Annotation icon
 
new

Development of an Accelerated Test for Tire Flat-Spotting

NissanTechnical Center North America-Farokh Kavarana, Scott Fritz
Published 2019-06-05 by SAE International in United States
Tire flat-spotting occurs when tires remain in a loaded condition without rolling for an extended period of time, and can be temporary or permanent depending on the length of storage, vehicle loading and environmental factors. Tire non-uniformity caused from flat-spots often induce shake and shimmy vibration in vehicles due to increased tire-wheel force variation input into the chassis. This results in increased warranty costs for OEMs and tire suppliers and customer dis-satisfaction in third-party quality surveys such as J. D. Power IQS. Flat-spotting is of particular concern for slow-moving vehicle inventory parked for long periods at plants and/or dealership lots.OEMs often stipulate or recommend inventory storage practices for dealers that require physical movement of vehicles at some set duration to reduce the risk of tires developing permanent flat-spots. OEMs also provide component level flat-spotting requirements to tire manufacturers during sourcing and specification timing to secure their internal requirements and targets. The study in this paper initially determined real-world flat-spotting levels on an actual vehicle during the adverse summer months of Arizona. Tire uniformity measured on…
Annotation icon
 
new

Gear System Parameters and Its Influence on Gearbox Noise

General Motors Technical Centre India-Yogesh Kumar Dewangan, Pranoy Sureshbabu Nair, Dipin Nair
Published 2019-06-05 by SAE International in United States
Tonal noise due to gears is one of the fundamental noise problems in a gearbox. Gear tooth deflections generate dynamic forces that lead to unwanted load fluctuations, thus noise. Different factors that are considered to control this noise, some to mention like proper gear macro design, microgeometry corrections, and housing compliance. However, identifying the appropriate variable as a measure of contribution to the overall response helps in getting more accurate remedial solutions. Some outputs to track are different harmonic components of TE, temperature effects, components of forces, rim compliance and friction.For evaluation, usually, the amplitudes of individual harmonics of transmission error are related to the respective orders of the noise levels assuming it as one of the primary excitation parameters of gear noise. In this paper, a brief overview of TE and its harmonic distribution is discussed with the example of an ideal gear mesh model and then quantifying TE with the introduction of mesh misalignment. The effect of providing additional microgeometry corrections to compensate for the misalignment is also discussed.The study in this paper…
Datasets icon
Annotation icon
 
new

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

Purdue University-Tongyang Shi, J Stuart Bolton
Published 2019-06-05 by SAE International in United States
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc. Then, more recently, with the motivation of facilitating the measurement process, the principles of Compressive Sensing (CS) have been introduced in several studies to allow sound fields to be reconstructed based on a relatively small number of microphone measurements (thus making holographic measurements more practical and inexpensive), and these studies have shown promising results when used to identify sound source locations. In the present…
Annotation icon