Your Selections

Logistics
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

NEXT GENERATION POWER DISTRIBUTION UNIT IN WIRING HARNESS

Mahindra & Mahindra, Ltd.-Boobala Krishnan D, Himanshi Dua, T Vijayan, Apurbo Kirty
  • Technical Paper
  • 2019-28-2571
Published 2019-11-21 by SAE International in United States
Keywords – Miniaturization, Low Profile (LP) Relays, Low Profile (LP) Fuses, Fuse box, Wiring Harness Research and/or Engineering Questions/Objective With the exponential advancement in technological features of automobile’s EE architecture, designing of power distribution unit becomes complex and challenging. Due to the increase in the number of features, the overall weight of power distribution unit increases and thereby affecting the overall system cost and fuel economy. The scope of this document is to scale down the weight and space of the power distribution unit without compromising with the current performance. Methodology Miniaturization involves replacing the mini fuses and J-case fuses with LP mini and LP J-case fuses respectively. The transition doesn’t involve any tooling modification and hence saves the tooling cost. Furthermore, to address stringent weight and space targets, LP mini fuses and LP J-case fuses were further replaced with micro-2 fuse and M-case fuse respectively. Similarly, micro relay and mini relay were replaced with Ultra micro and High current micro relay respectively. Results We took MPV segment vehicle for our initial testing and validation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

Force Motors-Apurva Chakraborty
  • Technical Paper
  • 2019-28-2426
Published 2019-11-21 by SAE International in United States
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire. This is also the scenario when both the tires are doing the maximum work in decelerating the motorcycle. Therefore, an optimal brake force distribution is one that locks…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of low cost life saving system for Automotive vehicles during Road Accidents.

Tata Technologies, Ltd.-Sachin Madhukarrao Pajgade, Aashish Bhargava
  • Technical Paper
  • 2019-28-2460
Published 2019-11-21 by SAE International in United States
According to research study 45% of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also loose the power to fight such critical situation due to psychological effect. When vehicle met accident, people are not getting on time support, this delay is the major cause of death in developing nations. Presently there is no any robust system available in market for passenger & commercial vehicles which helps to provide on time help to the injured persons & saves human life. In current situation low cost life saving device is need of our society. This paper deals with the design & development of the low cost-life saving device. This paper also comprises the scenario when any vehicle meet an accidents within certain speed limit then how the intelligent life saving device will work & save the life's. Further it explains the type of life saving device design, logical programming and system packaging. The system has been…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Improved update over-the-air solution through standardization of ‘software/firmware package format and flash jobs’

Elektrobit India-Pavithra Kumaraswamy
  • Technical Paper
  • 2019-28-2435
Published 2019-11-21 by SAE International in United States
This paper investigates and proposes the possibilities of standardizing the software/firmware package format and flash jobs in order to provide the possibility of productizing the update-over-the-air solution regarding on-board vehicle components and make use of it in all OEMs with minimum configuration changes and customization. The update-over-the-air solution in the automotive sector is provided by various suppliers and needs to be customized to meet various OEMs requirements. Possible Variants of OEM requirements are: • Variant 1 o Customer Portal + Backend + vehicle on-board components solution from supplier • Variant 2 o Customer Portal + Backend solution from OEM o Vehicle on-board components from supplier • Variant 3 o Backend from OEM o Customer Portal + vehicle on-board components from supplier ODX, VBF, and many other formats from OEMs include software/firmware packages. With variant 1, these different formats are converted into one supplier proprietary format and is saved in backend and understood by the vehicle on-board components for re-programming of target ECUs. With variant 2 and variant 3, these different OEM formats have to be…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Logistics Product Data

LCLS Life Cycle Logistics Supportability
  • Aerospace Standard
  • GEIASTD0007C
  • Current
Published 2019-11-06 by SAE International in United States

SAE GEIA-STD-0007C defines logistics product data g enerated during the requirement definition and design of an industry or government system, end item, or product. It makes use of the Extensible Markup Language (XML) through the use of entities and attributes that comprise logistics product data and their definitions. The standard is designed to provide users with a uniform set of data tags for all or portions of logistics product data. The standard can be applied to any industry or government product, system or equipment acquisition program, major modification program, and applicable research and development projects. This standard is for use by both industry and government activities. As used in this standard, the requiring authority is generally the customer and the customer can be a government or industry activity. The performing activity may be either a industry or government activity. The use of the term “contract” in this standard includes any document of agreement between organizations.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Cooperative Distribution Strategy of Regenerative Braking and Pneumatic Braking of an Electric Commercial Vehicle

Nanjing University of Science and Technology-Qing Cheng, Dawei Pi, Boyuan Xie, Hongliang Wang, Xianhui Wang
Published 2019-11-04 by SAE International in United States
This paper mainly proposes one type control strategy of the regenerative braking system of an electric commercial vehicle under normal braking condition. With the main goal of recovering as much energy as possible, the braking force distribution strategy based on maximum regenerative braking optimization is studied under the restriction of ECE regulation and state of charge (SOC) of battery. Firstly, the related models of the regenerative braking system and the target vehicle are separately established in MATLAB/Simulink. Then, the distribution strategy of braking force is developed and optimized considering the influence of SOC and vehicle speed respectively. Finally, the braking effects of this control strategy in the typical deceleration process are numerical simulated and analyzed. Simulation results depict that this control strategy can recover more braking energy under the premise of ensuring braking safety and great braking performance compared with the common braking strategies with traditional strategy and without regenerative braking.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Polyurethane Foam Performances’ Influence on Body Pressure Distribution on an Automotive Seat

Changchun Faway Adient Automotive System Co., Ltd. Technical-Yanfei Wang, Li-Feng Xing, Yu-Qiang Huang
Published 2019-11-04 by SAE International in United States
From the microstructure point of view, the relationship of car seat comforts, including the static and dynamic comfort, and the polyurethane foam performance of its cushion has been analyzed. In this paper, polyurethane cushion performances associated with the seat static comfort have been mainly discussed. And their quantizing relation is obtained. How to apply the pressure gradient, one of body pressure distribution parameters, to optimize automobile seat comfort has been analyzed in detail. The findings suggest maximum and mean values of body pressures increase by 0.09 KPa and 0.04 KPa with the cushion foam hardness (Ph) increasing 1 KPa, respectively. The pressure gradient is little dependent on the cushion foam hardness within the range of Ph=4 ~ 5 KPa. Furthermore, the foam thickness under the hip should be greater 80 mm in order to reduce subcutaneous stresses under conditions of Ph= 6.2 KPa.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

China-Hongyu Zheng
Jilin University-Rui Li
Published 2019-11-04 by SAE International in United States
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds. The results show that the strategy enables the vehicle to stop within a safe distance, keeps the brake deceleration as smooth as possible for better braking comfort while at the same time obtaining better braking economy by increasing braking efficiency under different initial speeds.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Investigation of Dry Sliding Wear Behavior of AA8011 Reinforced with Zirconium Oxide and Aluminium Oxide Hybrid Composites Processed through Multi-Direction Forging

Sri Krishna College of Engg. and Tech.-Sathishkumar Kuppuraj, Soundararajan Ranganathan, Sathishkumar Aruchamy, Shanthosh Gopal
Published 2019-10-11 by SAE International in United States
The Cardinal goal of this research work is to fabricate hybrid composites of AA8011 with reinforcement particles of Zr2O3 and Al2O3 which was taken in equal (5wt%) weight percentage. The hybrid composites were cast in a square shape (50x50x50 mm size) under the optimal stir casted process parametric condition, further, it was taken for the forging process. The prepared specimens were induced for uni-direction (x), bi-direction (x and y) and multi-direction (x,y, and z) forging route and the response of microhardness of 53, 68, 81 and 96 VHN were obtained respectively due to microstructural phase changes with an even distribution of particles in the matrix. Thus, the tribological properties of prepared specimens were tested using pin-on-disc Tribometer at room temperature under dry sliding condition of load 5,10,15,20 N and by adjusting the sliding speed as 266 and 531 rpm respectively. The outcomes uncovered all the specimens that the wear rate increments with an increase in load and coefficient of friction show an increase at most extreme load conditions. Wear rate increments with increment in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Study on the Development of an Effective Framework for Implementation and Sustenance of an Obsolescence Material Management System in an Aerospace Supplier Manufacturing Industry Environment

GITAM School of Technology-Mani Rathinam Rajamani, Eshwaraiah Punna
Published 2019-10-11 by SAE International in United States
Obsolescence Material management plays an important and vital role in today’s modern Aerospace manufacturing, Aerospace Maintenance, Repair and Overhaul industry as well as Aerospace Distributors. Aerospace vehicles have a considerable longer product life-cycle when compared to any other consumer goods like automobile and electronics industry. With the advent of new, disruptive technologies, many sources and supplies of materials including COTS and Standard catalogue parts, components and goods, which are widely used in an Aerospace manufacturing environment, are diminishing at a considerable rate and thus result in their obsolescence before the end disposal of the product life cycle. It is one of the leading causes to the sale of counterfeit and fraudulent parts and components, which can result in considerable deterioration of Quality and Cost to Customer. This technical paper emphasizes on the need for implementation of an effective Obsolescence management framework which an Aerospace company can follow through defining, deploying and sustaining Obsolescence Management through Policy, Procedures, Process and People methodology to be followed at manufacturing, maintenance and to identify proactively, notify and mitigate the…
This content contains downloadable datasets
Annotation ability available