Your Selections

Lightweighting
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Sustainability Assessment of Lightweight Concept for an Automotive Car Module

Benteler-Joern Toelle
Toyota Motor Europe-Martin Kerschbaum
  • Technical Paper
  • 2020-37-0033
To be published on 2020-06-23 by SAE International in United States
Recently sustainability has become a priority for industry production. This issue is even more valid for the automotive sector, where Original Equipment Manufacturers have to address the environmental protection additionally to traditional design issues. Against this background, many research and industry advancements are concentrated in the development of lightweight car components through the application of new materials and manufacturing technologies. The paper deals with an innovative lightweight design solution for the bumper system module of a B-segment car. The study has been developed within the Affordable LIght-weight Automobiles AlliaNCE (ALLIANCE) project, funded by the Horizon 2020 framework programme of the European Commission. A bumper demonstrator, that is currently in series production and mainly consists of conventional aluminum materials, is re-engineered making use of 7000 series aluminum alloys. The design alternatives are described and assessed regarding the achieved weight saving. The study is complemented by a sustainability assessment of the different modules performed through the Life Cycle Assessment methodology. The analysis takes into account production, use and End-of-Life stages and the results are expressed in terms…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advance CAE Methods for NVH Development of High Speed Electric Axle

AVL LIST GmbH-Mehdi Mehrgou, Julian Pohn, Bernhard Graf, Christoph Priestner, Inigo Garcia de Madinabeitia
AVL Software and Functions Gmbh-Mathias Deiml
  • Technical Paper
  • 2020-01-1501
To be published on 2020-06-03 by SAE International in United States
By developing more electric vehicles more and more focus are to the noise and vibration from Electric Drive unit. Here a high-speed E-axle for premium class vehicle is being developed up to 30,000 rpm, with high power density and lightweight design which introduce new challenges. Benchmarking of different E-axle and vehicles lead to targets which can be used at the begin of development as subsystem targets. This paper shows first how these targets like tonal noise can be simulated. Then the CAE method is used to optimize the source and structure to improve the NVH. Different aspects like torque ripple, electric whine, gears whine and mounting are discussed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A generic testbody for low-frequency aeroacoustic buffeting

BMW Group, Munich, Germany-Rafael Engelmann, Christoph Gabriel
Vienna University of Technology-Stefan Schoder, Manfred Kaltenbacher
  • Technical Paper
  • 2020-01-1515
To be published on 2020-06-03 by SAE International in United States
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility. Additionally, low frequency structural behavior strongly depends on appropriate boundary conditions being subject to manufacturing and mounting conditions. The goal of this work is to develop, simulate and experimentally validate a generic, easy-to-adjust experimental setup to test and assess low frequency vibro-aero-acoustic optimization…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design Considerations for Lightweighting with Ductile Iron Castings

Skuld LLC-Sarah Jordan, Mark DeBruin
Worcester Polytechnic Institute-Christopher Brown, Hudson Gasvoda
  • Technical Paper
  • 2020-01-0656
To be published on 2020-04-14 by SAE International in United States
There are many opportunities for lightweighting with ductile iron castings. Current research shows ductile iron castings free of massive carbides can be achieved at under 2 mm (0.080”) through alloying or process changes which means that significant weight reductions are possible. In fact, for aluminum components over 4 mm thick, ductile iron may provide lightweighting opportunities at a cost savings. However, the conventional guidelines for casting design are inadequate when using ductile iron at dimensions less than the typical machine stock. This paper will discuss the current research on thin walled ductile iron, when it is superior to aluminum, design considerations, and current DOE SBIR funded research efforts to address these inadequacies. Research results on efforts to quantify and improve surface roughness in expanded polystyrene for lost foam casting are also discussed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Fabrication of Carbon Fibre/Epoxy-Aluminum Hybrid Suspension Control Arms for Formula SAE Race Cars

ARAI FID PUNE-Pramod Hande
Vellore Institute of Technology-Mayank Gupta, Akash Porwal, Harshvardhan Rao Budi, Padmanabhan Krishnan
  • Technical Paper
  • 2020-01-0230
To be published on 2020-04-14 by SAE International in United States
Suspension system of a vehicle plays an important role to carefully control motion of the wheel throughout the travel. The vertical and the lateral dynamics (ride and handling) is affected by the unsprung-to-sprung mass ratio. Lower value of this mass ratio leads to enhanced performance of the car. To optimize the unsprung mass of the car, design of control arm plate is optimized with Aluminum material and Carbon fibre reinforced composite control arms framework are used to achieve high stiffness to weight ratio. These leads to increase in overall power to weight ratio of the car which helps to deliver maximum performance to the wheels. Through analysis of real-life working conditions of the entire steering knuckle assembly in ACP pre- post ANSYS 18.1 with the defined boundary conditions, equivalent stress and total deformations are obtained. Based on the results, geometrical topology of the control arms plates is further optimized. After several tensile tests on different bond length and bond gap, the outer surface of control arm tube was bonded to the inner surface of control…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Frame Structure Durability Development Methodology for Various Design Phases

FCA Engineereing India Pvt., Ltd.-Raghavendra Byali, Venkatesh Naik
FCA US LLC-Chandra Thandhayuthapani, Barry Lin, Jianghui Mao
  • Technical Paper
  • 2020-01-0196
To be published on 2020-04-14 by SAE International in United States
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements.Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process. Frame gauge optimization during the subsequent development phase (II) utilizing a newly developed damage based approach greatly reduced the number of design iterations relative to a typical stress based approach. In the light weighting phase (III) that followed, a method was established to effectively locate and optimize lightening holes using fatigue…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Functionality Analysis of Thermoplastic Composite Material to Design Engine Components

Politecnico di Torino-Abbas Razavykia, Cristiana Delprete, Carlo Rosso, Paolo Baldissera
  • Technical Paper
  • 2020-01-0774
To be published on 2020-04-14 by SAE International in United States
Developing of innovative technologies and materials to meet the requirements of environmental legislation on vehicle emissions has paramount importance for researchers and industries. Therefore, improvement of engine efficiency and fuel saving of modern internal combustion engines (ICEs) is one of the key factors, together with the weight reduction. Thermoplastic composite materials might be one of the alternative materials to be employed to produce engine components to achieve these goals as their properties can be engineered to meet application requirements. Unidirectional carbon fiber reinforced PolyEtherImide (CF/PEI) thermoplastic composite is used to design engine connecting rod and wrist pin, applying commercial engine data and geometries. The current study is focused on some elements of the crank mechanism as the weight reduction of these elements affects not only the curb weight of the engine but the overall structure. As a matter of fact, by reducing the reciprocating mass, alternate forces will be reduced and hence the size of the structural elements. Also, other elements of the engine can be designed for lightweighting, but the crank mechanism elements maximize…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

Maruti Suzuki India, Ltd.-Amandeep Singh, Jaspreet Singh, Sanjay Poonia, Ankit Jalan, Narinder Kumar, Shailender Sharma, Deepali Agarwal, Kushal Puri
  • Technical Paper
  • 2020-01-0169
To be published on 2020-04-14 by SAE International in United States
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets.In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst. Additionally, this technology also helps in cost saving due to reduced parts count, in engine weight reduction, improve the response and increase fuel economy during the cold start stage of Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Lightweight Design of Automotive Front End Material-Structure Based on Frontal Collision

Nanjing University of Science & Technology-JIANGFAN ZHANG
Naveco, Ltd.-Xiaojun Zou, Liu-kai Yuan, Hualin Zhang
  • Technical Paper
  • 2020-01-0204
To be published on 2020-04-14 by SAE International in United States
The front end structure is an important role in protecting the vehicle and passengers from harm during the collision. Increasing its protective capacity can be achieved by increasing the thickness or replacing high-strength materials. Most of the current research is analyzed separately from these two aspects. This paper proposes a multi-objective optimization method based on weighting factor analysis, which combines material and thickness selection. Firstly, the optimized components are determined based on the 100% frontal collision simulation results. Secondly, six thicknesses and two materials of the front part of the vehicle body are selected as design variables to construct an orthogonal test design. In this paper, a weight-based multi-factor optimization method is used to numerically analyze the response results obtained by orthogonal experiments. Analyze the impact of each factor on the optimization goal to select the most reliable optimization. This optimization method can select the best material and component thickness combination scheme. The results show that the mass of the selected parts are reduced by 16.5%; the total energy absorption is increased by 5.2%; the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Applying Advanced High Strength Steels on Automotive Exterior Panels for Lightweighting and Dent Resistance

AK Steel Corporation-Jianyong Liang, Jimmy Zhang, Feng Zhu, Ralph Mutschler, Yu-Wei Wang
  • Technical Paper
  • 2020-01-0535
To be published on 2020-04-14 by SAE International in United States
The lightweighting potential brought by advanced high strength steels (AHSS) was studied on automotive exterior panels. The dent resistance was selected as a measure to quantify the lightweighting since it is the most crucial for exterior panels. NEXMET® 440EX and 490EX, which possess both the surface quality and high strength, are evaluated and compared with BH210 and BH240. The denting analysis was conducted first on representative plates with different curvatures to simulate the dented areas on door outer, roof and hood panels. In addition, both 1% and 2% pre-strain and baking scenarios are considered for this plate, which represent the most common situations for exterior panels. The maximal dent load that the plates can sustain was calculated and compared for all those steel grades. Then the dent resistance analysis was conducted on a selected door outer panel. The minimum gauge required to meet the dent resistance performance was obtained. The potential to down-gauge the exterior panels using NEXMET® 440EX and 490EX is clearly revealed.