Your Selections

Knock
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

Istituto Motori CNR-Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
Published 2019-10-07 by SAE International in United States
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed.In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered. Moreover, knock intensity has been evaluated by means of two common indexes. High speed imaging has been carried out in the combustion chamber of a high performance DISI engine provided with an optical window in…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock and Pre-Ignition Limits on Utilization of Ethanol in Octane-on-Demand Concept

King Abdullah Univ. of Science & Tech.-Eshan Singh, Robert Dibble
Saudi Aramco-Kai Morganti
Published 2019-09-09 by SAE International in United States
Octane-on-Demand (OoD) is a promising technology for reducing greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for low and mid load operating conditions, and a high-octane additive is added at high load operating conditions. Researchers have focused on the minimum ethanol content required for operating at high load conditions when the low-octane fuel becomes knock limited. However, it is also widely known that ethanol has a high tendency to pre-ignite, which has been linked with its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower stoichiometric air-fuel ratio, requiring a larger injected fuel mass per cycle. A larger fuel mass increases the potential for oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence, the limits on ethanol addition owing to pre-ignition also need consideration before the technology can be implemented. In this regard, experiments were performed using light naphtha (RON 68) and ethanol in direct and port-fuel injection configuration, respectively. The engine load was parametrically swept by simultaneously increasing the intake air and fuel quantity until the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock Mitigation by Means of Coolant Control

Università della Calabria-Diego Perrone, Luigi Falbo, Teresa Castiglione, Sergio Bova
Published 2019-09-09 by SAE International in United States
The possibility to mitigate the knock onset by means of a controlled coolant flow rate is investigated. The study is carried out on a small displacement, N.A. 4-valve per cylinder SI engine. The substitution of the standard belt-driven pump with an electrically driven one allows the variation of the coolant flow rate regardless of engine speed and permits, therefore, the adoption of a controlled coolant flow rate. The first set of experimental tests aims at evaluating the engine operating condition and the coolant flow rate, which are more favorable to the knock onset. Starting from this condition, subsequent experimental tests are carried out for transient engine operating conditions, by varying the coolant flow rates and evaluating, therefore, its effects on cylinder pressure fluctuations. In all the experiments, the spark advance and the equivalence ratio are controlled by the ECU according to the production engine map. The results show that the effects of coolant flow rate on in-cylinder pressure fluctuations are not negligible and the implementation of a predictive controller for the management of the coolant…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Sensitivity Analysis of the Combustion Parameters in a Stratified HCCI Engine with Regard to Performance and Emission

Mazandaran University of Science and Tech-Mohsen Pourfallah, Mahboud Armin
Published 2019-09-09 by SAE International in United States
Homogeneous charge compression ignition (HCCI) is a promised solution to environmental and fuel economy concerns for IC engines. Engine application for HCCI engine depends on an array of parameters such as fuel type, mixture composition, intake condition and engine specification, meaning that controlling an HCCI engine can only be done through the adjustment of these parameters. In this numerical study which is driven from an experimental work, thermal and charge stratification is used to control HCCI combustion. The effect of intake temperature, compression ratio, intake pressure, EGR, reformer gas (CO-H2 mixture) and glow plug temperature on engine performance and emission was investigated using a 3D model on AVL-FIRE parallel with 1D model on GT-Power software. Then AHP model as a Multiple Attribute Decision Making method has been used to analyze the sensitivity of these parameters on performance and emission. Results indicate that increasing intake temperature causes the operating condition approaches knock which results in a narrower operating region. Increasing EGR ratio makes possible the expanding of operating range rich limit since it causes delayed combustion…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

CFD Analysis and Knock Prediction into Crevices of Piston to Liner Fireland of an High Performance ICE

Ferrari Gestione Sportiva-Angelo Rosetti, Corrado Iotti, Andrea Bedogni
University of Modena e Reggio Emilia-Giuseppe Cantore, Stefano Fontanesi, Fabio Berni
Published 2019-09-09 by SAE International in United States
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: it is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. “Standard” knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses. Some unusual types of detonation may occur somewhere else in the combustion chamber: knocking inside piston/liner crevices belongs to the latter category and damages on the piston top land (very similar to pitting) are one of the evidence of knock onset in this region. The very localized regions of damage onset, the cycle to cycle…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Analysis of the Influence of Water Injection Strategies on DISI Engine Particle Emissions

IVK - University of Stuttgart-Antonino Vacca, Michael Bargende
Technische Universitat Berlin-Maike Sophie Gern
Published 2019-09-09 by SAE International in United States
Increasing the efficiency of modern gasoline engines (with direct injection and spark-ignition - DISI) requires innovative approaches. The reduction of the engine displacement, accompanied by an increase of the mean pressure, is limited by the tendency of increasing combustion anomalies. Conventional methods for knock mitigation, on the contrary, have a negative effect on consumption and efficiency. A promising technology to solve these conflicting objectives is the injection of water. Both the indirect and the direct water injection achieve a significant reduction in the load temperature. The fuel enrichment can be reduced, whereby the operating range of the exhaust aftertreatment can be extended. In addition, water injection paves the way for an increase in the geometric compression ratio, which leads to an efficiency advantage even at partial load. The influence of water injection on the combustion process and raw emissions was analyzed experimentally on a single-cylinder research engine with direct and indirect water injection. Even though water injection initially slows down the combustion process, both injection concepts allow a clear shift in the knock limit and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

Driven Racing Oil-Lake Speed
National Renewable Energy Laboratory-Bradley Zigler, Jon Luecke
Published 2019-09-09 by SAE International in United States
This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation. It was hypothesized that the thermal effect was associated with lube oil nitrogenation. To test this theory, nitromethane (CH3NO2) was blended at 6.5% by volume CH3NO2 resulted in significant sensitivity to lubricant additive package effect on SPI, even at reduced loads where no lubricant sensitivity was observed without…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

Magneti Marelli SpA - Driveline Division-Matteo De Cesare
University of Bologna-Francesco Ranuzzi, Nicolo Cavina, Guido Scocozza, Alessandro Brusa
  • Technical Paper
  • 2019-24-0015
Published 2019-09-09 by SAE International in United States
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load.This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper. At first, the focus is on the open-loop branch, to evaluate the performance of the combustion model and its ability to manage Spark Advance (SA) taking in account the phasing implications of WI, maintaining a pre-defined combustion phase target. Then the closed-loop (CL) chain is introduced, defining a structure that allows reaching the target while keeping knock intensity (KI) levels under…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Evaluation of Water and EGR Effects on Combustion Characteristics of GDI Engines Using a Chemical Kinetics Approach

NAIS-Claudio Forte
University of Bologna-Giulio Cazzoli, Gian Marco Bianchi, Stefania Falfari, Matteo Ricci
  • Technical Paper
  • 2019-24-0019
Published 2019-09-09 by SAE International in United States
The modern spark ignition engines, due to the introduced strategies for limiting the consumption without reducing the power, are sensitive to both the detonation and the increase of the inlet turbine temperature. In order to reduce the risk of detonation, the use of dilution with the products of combustion (EGR) is an established practice that has recently improved with the use of water vapor obtained via direct or indirect injection.The application and optimization of these strategies cannot ignore the knowledge of physical quantities characterizing the combustion such as the laminar flame speed and the ignition delay, both are intrinsic property of the fuel and are function of the mixture composition (mixture fraction and dilution) and of its thermodynamic conditions.The experimental measurements of the laminar flame speed and the ignition delay available in literature, rarely report the effects of dilution by EGR or water vapor. To overcome the limitations of the experimentation is possible to predict the value of the ignition delay using numerical models based on chemical kinetics theory. The increased performance of computing systems…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

FKFS-Francesco Cupo, Marco Chiodi
Technical Univ of Munich-Daniel Koch, Georg Wachtmeister
  • Technical Paper
  • 2019-24-0090
Published 2019-09-09 by SAE International in United States
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance. The goal is to create a series of models that allow to virtually investigate different fuels and to minimize, as much as possible, the costly and time-consuming experimental tests. In…
This content contains downloadable datasets
Annotation ability available