The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Show Only


File Formats

Content Types










   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Patient Demographics and Injury Characteristics of ER visits Related to Powered Scooters

Exponent, Inc.-Heather N Watson, Christina MR Garman, Jeffrey Wishart, Jacqueline Zimmermann
  • Technical Paper
  • 2020-01-0933
To be published on 2020-04-14 by SAE International in United States
Electric scooters (e-scooters) have become increasingly popular in the U.S. In 2018, e-scooters usage overtook other shared micro-mobility transportation modes, including bike shares; over 38 million trips were taken on e-scooters. As the popularity increases, so does the societal concern regarding the safety of these devices. To examine the types of injuries associated with e-scooters and the injury rate per trip at a national level, the National Electronic Injury Surveillance System (NEISS), a probability sample of US Hospitals that collects information from emergency room visits related to a consumer product, was utilized. Records from September 2017 to December 2018 were extracted, and those associated with powered scooters were identified. Injury distributions by age, sex, race, treatment, diagnosis and location on the body were explored. The number of person-trips was obtained to perform a risk analysis. Between September 2017 and December 2018, an estimated 17,772 injuries were associated with powered scooters. Nearly 45% of injuries occurred in persons aged 10-29 years and males tended to sustain a higher proportion of injuries compared to females. Almost 87%…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Biomechanics of Passenger Vehicle Underride: An Analysis of IIHS Crash Test Data

Vollmer-Gray Engineering Laboratories-Mohammad Atarod
  • Technical Paper
  • 2020-01-0525
To be published on 2020-04-14 by SAE International in United States
Occupant dynamics during passenger vehicle underride has not been widely evaluated. The present study examined the occupant data from IIHS rear underride crash tests. A total of 35 crash tests were evaluated. The tests were classified as full-width (n=9), 50% overlap (n=11), and 30% overlap (n=15). A 2010 Chevrolet Malibu impacted the rear underride guard of a stationary trailer at 35 mph. The trailer was filled with concrete blocks and attached to a 2001 Kenworth tractor. Several occupant kinematics and dynamics data including head accelerations, head injury criteria, neck shear and axial forces, neck moments, neck indices, chest acceleration, chest displacement, chest viscous criterion, sternum deflection rate, and left/right femur forces/impulses, knee displacements, upper/lower tibia moments, upper/lower tibia indices, tibia axial forces, and foot accelerations were measured. The vehicle accelerations, vehicle delta-Vs, and occupant compartment intrusions were also evaluated during these crash tests. The results indicated that the head and neck injury parameters were correlated with driver A-pillar rearward intrusion. The 30% overlap crashes showed significantly higher intrusion and head and neck injury values than…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Human Body Model Study on Restraints for Side-Facing Occupants in Frontal Crashes of an Automated Vehicle

Joyson Safety Systems-Maika Katagiri, Sungwoo Lee
Joyson Safety Systems, NA-Jay Zhijian Zhao
  • Technical Paper
  • 2020-01-0980
To be published on 2020-04-14 by SAE International in United States
This study is to investigate kinematics and responses of side-facing seated occupants in frontal crashes of an automated minivan using Global Human Body Models Consortium (GHBMC) simplified occupant models (50th%ile male and 5th%ile female), and to develop new restraint concepts to protect the occupants. The latest GHBMC M50-OS and F05-OS models (version 2.1) were further validated with the Postmortem Human Subject (PMHS) side sled tests [Cavanaugh 1990] and the PMHS far-side sled tests [Formen 2013], with detailed correlations of the kinematics and the injury measures. Robustness and biofidelity of the GHBMC human models, especially for the pelvis and knee body regions, were further improved. Using the improved M50-OS and F05-OS models, we evaluated the body kinematics and injury measures of the side-facing seated occupants in frontal crashes at severities ranging from 15 mph to 35 mph. Three restraint conditions were studied: 1) no restraint; 2) lap belt only; 3) lap belt and conceptual inflatable device. An additional parametric study on the restraint design parameters of the #3 restraint concept was performed to “optimize” the restraint…

Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading Conditions

Emory University, Atlanta, GA-Jonathan D Rupp
The John Hopkins University Applied Physics Laboratory, Laur-Constantine K Demetropoulos, Kyle A Ott, Christopher J Dooley, Nathanael P Kuo, Leah M Strohsnitter, Joseph R Andrist, Mary E Luongo, David G Drewry III, Andrew C Merkle
  • Technical Paper
  • 2019-22-0010
Published 2020-03-31 by The Stapp Association in United States
Limited data exist on the injury tolerance and biomechanical response of humans to high-rate, under-body blast (UBB) loading conditions that are commonly seen in current military operations, and there are no data examining the influence of occupant posture on response. Additionally, no anthropomorphic test device (ATD) currently exists that can properly assess the response of humans to high-rate UBB loading. Therefore, the purpose of this research was to examine the response of post-mortem human surrogates (PMHS) in various seated postures to high-rate, vertical loading representative of those conditions seen in theater. In total, six PMHS tests were conducted using loading pulses applied directly to the pelvis and feet of the PMHS: three in an acute posture (foot, knee, and pelvis angles of 75°, 75°, and 36°, respectively), and three in an obtuse posture (15° reclined torso, and foot, knee, and pelvis angles of 105°, 105°, and 49.5°, respectively). Tests were conducted with a seat velocity pulse that peaked at ~4 m/s with a 30-40 ms time to peak velocity (TTP) and a floor velocity that…

Wireless Sensor “Stickers” Track Physiological Signals

  • Magazine Article
  • TBMG-35823
Published 2020-01-01 by Tech Briefs Media Group in United States

Engineers have developed a way to detect physiological signals emanating from the skin with sticky sensors that beam wireless readings to a receiver clipped onto clothing. To demonstrate the wearable technology, the researchers stuck sensors to the wrist and abdomen of a test subject to monitor the person's pulse and respiration by detecting how their skin stretched and contracted with each heartbeat or breath. Likewise, stickers on the person's elbows and knees tracked arm and leg motions by gauging the minute tightening or relaxation of the skin each time the corresponding muscle flexed.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Specifications for a Midsize Male Pedestrian Research Dummy

Human Biomechanics and Simulations Standards Committee
  • Ground Vehicle Standard
  • J2782_201911
  • Current
Published 2019-11-26 by SAE International in United States
While it is recognized that collisions involve pedestrians of all sizes, this Information Report addresses performance specifications for a midsize adult male research dummy. This approach stems from the greater knowledge of biomechanics and existing dummy technologies for the midsize male relative to other adult sizes and children. While not the initial objective, it is envisioned that additional performance specifications for other sizes of pedestrian research dummies will be developed in the future based on accepted scaling procedures. The specific requirements for the pedestrian dummy have been based on a collective assessment of pedestrian injury, response, and anthropometry priorities from the experimental, epidemiologic, and computational literature. In general, the objective was to specify performance specifications based on human characteristics and the impact response of post-mortem human subjects rather than to specify the design of a particular physical device. Based on the perceived applications for a research pedestrian dummy, the primary focus of this document centered on biofidelic whole-body kinematics during a vehicle-pedestrian impact. Specific body regions were prioritized (see A.1.5) based on a combination of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Standard for Child Restraint Systems in Transport Category Airplanes

Aircraft SEAT Committee
  • Aerospace Standard
  • AS5276/1
  • Current
Published 2019-10-31 by SAE International in United States
This SAE Aerospace Standard (AS) defines minimum performance standards and related qualification criteria for add-on child restraint systems (CRS) which provide protection for small children in passenger seats of transport category airplanes. The AS is not intended to provide design criteria that could be met only by an aircraft-specific CRS. The goal of this standard is to achieve child-occupant protection by specifying a dynamic test method and evaluation criteria for the performance of CRS under emergency landing conditions.
This content contains downloadable datasets
Annotation ability available

Harvesting Energy from the Human Knee

  • Magazine Article
  • TBMG-35097
Published 2019-09-01 by Tech Briefs Media Group in United States

An energy harvester attached to the wearer’s knee can generate 1.6 μW of power while the wearer walks without any increase in effort. The energy is enough to power small electronics like health monitoring equipment.

Engineers 3D Print Flexible Mesh for Ankle and Knee Braces

  • Magazine Article
  • TBMG-34984
Published 2019-08-01 by Tech Briefs Media Group in United States

Hearing aids, dental crowns, and limb prosthetics are some of the medical devices that can now be digitally designed and customized for individual patients, thanks to 3D printing. However, these devices are typically designed to replace or support bones and other rigid parts of the body, and are often printed from solid, relatively inflexible material.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Knee Airbag (KAB) Concept for Small Overlap and Oblique Frontal Impacts

Detroit Engineered Products (DEP) Inc.-Rahul Makwana
Ford Motor Co., Ltd.-Pardeep Jindal
Published 2019-04-02 by SAE International in United States
Considerable research has been conducted in terms of attempting to reduce lower leg injury risk in full frontal impacts, in some cases by the use of a knee airbag (KAB). However, there has been limited research into the performance of KAB systems during a crash test with increased oblique loading, such as the IIHS small overlap frontal test, an oblique moving deformable barrier test (OI) being researched by NHTSA, and a mobile progressive deformable barrier test (MPDB) that is expected to be implemented by Euro NCAP in the next few years. The objective of the current numerical study was concentrated on the evaluation of an innovative KAB concept design intended to reduce ATD right inboard lower leg/foot responses under small overlap and oblique loading conditions. A novel appendage KAB concept design was developed with the help of morphing and computational studies which were performed with different ATD sizes. In the study, one of the lower leg/foot responses was monitored and compared over a conventional KAB design. Cases investigated in the study showed that the novel…
This content contains downloadable datasets
Annotation ability available