Your Selections

Head injuries
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES

GM Technical Center-Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa
  • Technical Paper
  • 2019-28-2546
To be published on 2019-11-21 by SAE International in United States
MASS OPTIMIZED HOOD DESIGN FOR CONFLICTING PERFORMANCES Santosh Swamy, Gulshan Noorsumar, Shivakumar Chidanandappa General Motors Technical Center, India Keywords Hood; Head Injury Criterion (HIC); Stiffness; Shape optimization; Multi-Disciplinary Optimization (MDO) Research and/or Engineering Questions/ Objective The objective of this work is to obtain a light weight hood which has least possible mass, and at the same time meets all contradicting performances of pedpro (pedestrian protection) and structural stiffness disciplines. Passenger vehicles have stringent safety norms from pedpro perspective to meet child and adult head injury criteria (HIC). These pedestrian safety requirements often conflict with structural stiffness performance criteria which pose a challenge for most automotive OEMs. Therefore, there is a growing need for mass optimization and performance balancing to meet both the requirements simultaneously. Methodology The outlined method uses a CAE based Multi-Disciplinary Optimization (MDO) approach involving shape variables to find an optimum design for stiffness and pedpro performances. Adding slots along the vertical beam walls of the hood inner panel helps soften the area around the head impact location, thereby improving pedpro performance locally.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Additive Manufactured Thermoplastic Component as FMVSS 201U Countermeasure

General Motors Technical Center India-Swaroop Kavi
  • Technical Paper
  • 2019-28-2547
To be published on 2019-11-21 by SAE International in United States
Research and/or Engineering Questing/Objectives: Safety of the occupant in passenger cars is one of the regulatory requirements in many developed countries. This includes upper interior head impact load case of the unbelted occupant during crash (FMVSS 201U) as one of them. During a crash event the occupant head can collide with the interior parts of the vehicle, such as a headliner, pillar trim and other subsequent components in the loading direction. Injury on the head is quantified in terms of the Head Injury Criterion of a crash test dummy (HIC(d)) value which should be less than 1000 per standard. Several ways can be adopted to reduce the HIC(d) value. These include a change in the design of ribs in the safety plastic components, headliner profile change, use of countermeasure foam between headliner and the exterior sheet metal parts, or a combination of any of these to absorb the energy of impact. Recent developments in the field of manufacturing, such as the Additive Manufacturing (AM) method, have provided an opportunity to design and manufacture components with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Injury Reduction in Vehicle to Pedestrian Collision using Deployable Pedestrian Protection System in Vehicles

International Centre For Automotive Tech-Jitendra Singh Gaur
  • Technical Paper
  • 2019-28-2551
To be published on 2019-11-21 by SAE International in United States
Head injuries are the main source of road fatalities in when a pedestrian is involved in an accident with the vehicle. The frontal part of vehicle such as engine hood, lower-windshield area and A-pillars are the possible location of head impact in such accidents. The head impact with hard points located in these areas result in the fatal head injuries. The effect of impact can be reduced by using the deployable pedestrian protection systems (DPPS) such as hood-lifters and windshield airbag in the vehicle. The study shows how these systems are effective in reducing the fatalities in pedestrian accidents and how to evaluate the performance of these deployable systems.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Assessment of Pyramidal Lattice Core Sandwich Engine Hood for Pedestrian Safety

Mepco Schlenk Engineering College-Dhinesh Balasubramanian, Anish Jafrin Thilak Johnson
  • Technical Paper
  • 2019-28-0089
To be published on 2019-10-11 by SAE International in United States
Road accidents are increasing now-a-days, Safety of pedestrian is the great concern. In average, 10% of urban pedestrian accidents are fatal. Statistics show that the impact on front side of cars is the major cause of pedestrian deaths (83.5%). The function of a vehicle’s engine hood is to keep its engine covered and allow access to the engine compartment as required for maintenance and repair. The hood structure not only protects the engine cavity, but also keeps pedestrians away from the parts of that cavity. The absorption capability and stiffness of hood structures are the key points considered when designing a vehicle’s hood. The impact of the pedestrian head on automotive hood results in major injuries and sometimes in death. Conventional engine hood results in greater Head Injury Criterion (HIC) values. GFRP pyramidal lattice core structures are used in automobiles which is used for good energy absorption. GFRP pyramidal lattice core sandwich engine hood absorbs impact energy rather than transmitting it to the head. This will minimize the severity rate of injury of pedestrian during…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Parametric Analysis and Optimization of Variables Affecting the Brain Injury Criterion (BrIC) in Various Crash Scenarios

SAE International Journal of Transportation Safety

Bowhead (Systems and Technology Group), United States-Vikas Hasija
National Highway Traffic Safety Administration, United States-Erik G. Takhounts, Matthew J. Craig
  • Journal Article
  • 09-07-01-0005
Published 2019-08-19 by SAE International in United States
Incompressibility of the brain makes it susceptible to damage from shear strains. Head rotational motion can easily produce high shear strains causing brain injury. Since head injury criterion (HIC) does not account for rotational motion, a brain injury criterion (BrIC) was developed. To design potential countermeasures for reducing BrIC, it is important to investigate the parameters that influence BrIC. This article focuses on parametric analysis to examine the sensitivity of BrIC to vehicle design and crash-related parameters, and identifying important parameters which can be controlled in developing countermeasures for reducing BrIC. Global Human Body Models Consortium (GHBMC) 50th percentile male simplified human finite element (FE) model was used in this study. Four different analyses were conducted: a Design of Experiments (DOE) study to investigate sensitivity of BrIC to impact direction and crash pulse severity b DOE studies, with fixed crash severity, for frontal, far side oblique, and near side oblique crash modes to identify important vehicle design parameters influencing BrIC c Optimization for frontal, far side oblique, and near side oblique crash modes to minimize…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study of Optimization Strategy for Vehicle Restraint System Design

ESTECO North America-Zhendan Xue
Ford Motor Co., Ltd.-Guosong Li, Ching-Hung Chuang, Kevin Pline
Published 2019-04-02 by SAE International in United States
Vehicle restraint systems are optimized to maximize occupant safety and achieve high safety ratings. The optimization formulation often involves the inclusion or exclusion of restraint features as discrete design variables, as well as continuous restraint design variables such as airbag firing time, airbag vent size, inflator power level, etc. The optimization problem is constrained by injury criteria such as Head Injury Criterion (HIC), chest deflection, chest acceleration, neck tension/compression, etc., which ensures the vehicle meets or exceeds all Federal Motor Vehicle Safety Standard (FMVSS) requirements. Typically, Genetic Algorithms (GA) optimizations are applied because of their capability to handle discrete and continuous variables simultaneously and their ability to jump out of regions with multiple local optima, particularly for this type of highly non-linear problems. However, the computational time for the GA based optimization is often lengthy because of the relatively slow convergence comparing to derivative based algorithms. This study compares GA and multi-strategy optimization algorithms on driver’s side full frontal 90-degree rigid barrier impact MADYMO simulations at different impact speeds with belted and unbelted occupants. The…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Residual Injury Situation and Accident Characteristics of Severe Motorcycle Accidents

Hannover Medical School-Dietmar Otte
Published 2019-04-02 by SAE International in United States
The total number of persons severely and fatally injured in road traffic accidents has reduced considerably in recent decades. However, the number of motorcyclists involved in accidents has not reduced to the same extent, and some countries have even recorded an increase. The aim of this study is to analyse the circumstances of motorcycle accidents in Germany involving vehicles with a cubic capacity of over 125 cm3 with particular reference to severely or fatally injured riders. An analysis is to be made of the characteristics and patterns of injuries suffered by the most severely injured motorcyclists and proposals developed for injury prevention. The study included accident data from 464 motorcycle accidents collected in Hanover and Dresden between 2010 and 2015 by an academic research team in the course of the GIDAS project (German In-Depth Accident Study). This data represents a statistically representative sample from real accidents occurring in Germany. The analysis of the current injury situation shows that motorcyclists are often severely injured, i.e. suffered injuries of grade MAIS 3+ (so called serious injuries) in…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Analytical Approach to Derive Free Package Space Requirement for Pedestrian Head Form

Tata Motors, Ltd.-Pratap Daphal, Ashish Mahapatre
Published 2019-01-09 by SAE International in United States
Pedestrians are a vulnerable road user group, comprising 22% of global road traffic deaths [1]. In Japan, pedestrian fatalities accounted for 28% of total road fatalities and approximately 16% in Australia. These figures compare with 13% for the USA and 40-50% for India and Thailand [2]. Various pedestrian safety requirements are mandated in different markets in recent years worldwide. For pedestrian head-form, vehicle front-end styling and the free package space below bonnet plays a vital role in deciding the pedestrian head-form safety performance. Currently during initial phase of vehicle development, the free package space requirement is decided based on benchmark data. However, the benchmarking data does not give any insight into the physics involved and is subjective in nature as it varies from vehicle to vehicle. This paper gives an analytical approach for defining the free package space requirements for meeting the targeted pedestrian head form performance requirements. The analytically derived Head Injury Criteria Vs package space is also compared with physical test results. Using analytical approach, an ideal two-step Head-form decelerations waveform is also…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Computational and Experimental Analysis of Head Injury Criteria (HIC) in Frontal Collision of Car with Pedestrian

Rajarambapu Institute of Technology-Dr. Dhananjay G Thombare
Published 2019-01-09 by SAE International in United States
Road accident between pedestrian and motor vehicle causes severe injuries and even death of pedestrian. The accident statistics show that the possibility of injury to pedestrian is higher in case of collision with car on busy roads. In car and pedestrian collisions, the pedestrian’s head hits with car bonnet and suffer from multiple injuries such as skull fractures and brain injury. The role of car bonnet structural strength plays an important role in pedestrian head injury level. To provide enough structural strength the high bonnet thickness is provided with under bonnet stiffeners, however thick bonnet and stiffeners reduces deformation of the bonnet during collision and increases injury level to pedestrian. Hence optimum bonnet thickness, least number and geometry of stiffeners and enough structural strength is important for bonnet to reduce injury level. The aim of this study is to analyse the effect of car bonnet thickness, number and arrangement of under bonnet stiffeners on head injury levels with the help of head injury criteria (HIC). Head Injury Criteria (HIC) is a measure of the likelihood…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Performance Specifications for a Generic Buck Representing a Small Family Car Used in the Assessment of Pedestrian Dummy Whole Body Impact Response

Human Biomechanics and Simulations Standards Committee
  • Ground Vehicle Standard
  • J3093_201901
  • Current
Published 2019-01-08 by SAE International in United States
This Information Report addresses the design and performance specifications for a generic buck to be used in full-scale vehicle to pedestrian tests conducted to evaluate pedestrian dummy performance. Specifically, the buck is designed to mimic the impact response of the front end of a sedan within the small family car class during a collision with a pedestrian. The goal is to develop a generic buck with simplified geometry and a limited number of components made of clearly defined and readily available engineering materials to facilitate fabrication and reproducibility. To ensure performance of the buck, it is specified that the buck mimics the maximum crush distance, absorbed energy, and maximum force corresponding to a sedan within the small family car class during a pedestrian impact. The design and performance specifications provided in this document focus on: (1) the design specifications describing the materials and geometry of the generic buck and (2) the specific certification tests that are required to ensure that any fabricated buck meets the necessary design specifications.
This content contains downloadable datasets
Annotation ability available