Your Selections

Gasohol
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Characterizing flash boiling sprays of E10 gasoline from a high-pressure gasoline multi-hole injector

Clean Combustion Research Center, King Abdullah University o-Jianguo Du, Balaji Mohan, William L Roberts
Department of Mechanical and Aerospace Engineering, North Ca-Tiegang Fang
  • Technical Paper
  • 2019-01-2249
Published 2019-12-19 by SAE International in United States
Flash boiling, as a potential way to achieve good atomization at low cost, is of great interest to researchers. A customized wide-angle multi-hole gasoline injector was utilized in this work to see how commercial E10 gasoline spray behaves at high injection pressure of gasoline compression ignition (GCI) application from 5 MPa to 45 MPa, and ambient gas pressure from 3 kPa to 300 kPa . A diffused back illumination technique was implemented to visualize the spray at flash boiling and non-flashing conditions. Three different types of spray pattern were observed and correlated to the characteristics like penetration length and spray width. A new parameter, namely optical thickness, was applied in the field of characterizing flash boiling effect for the first time, and compared with widely used penetration length and spray width. Optical thickness was found to be a good indicator for collapse, transition, and non-flashing spray.
This content contains downloadable datasets
Annotation ability available
Open Access

Elastomer Swell Behavior in 1-Propanol, Diisobutylene, Cyclopentanone, and a Furan Mixture Blended in E10 and a Blendstock for Oxygenate Blending (BOB)

SAE International Journal of Fuels and Lubricants

Oak Ridge National Laboratory, USA-Michael D. Kass, Christopher J. Janke, Raynella M. Connatser, Brian West
  • Journal Article
  • 04-12-03-0011
Published 2019-08-21 by SAE International in United States
The compatibility of four potential bio-derived blendstock molecules with infrastructure elastomers was determined by measuring the volume change following exposure. The blendstock molecules included 1-propanol, diisobutylene, cyclopentanone, and a furan mixture. The elastomers included two fluorocarbons, six nitrile rubbers (NBRs), and one each of fluorosilicone, neoprene, polyurethane, and silicone. The elastomers were exposed to the fuel molecules as blends ranging from 0 to 30 vol.% in both a blendstock for oxygenate blending (BOB) formulation and an E10 fuel. Silicone exhibited excessive swelling in each test fuel, while the other elastomers showed good compatibility (low swell) with diisobutylene, 1-propanol, and the furan mixture when BOB was used as the base fuel. The E10 base fuel produced high (>30%) swell in neoprene, polyurethane, and some nitrile rubbers. In most cases diisobutylene produced the least amount of volume expansion. In contrast, the addition of cyclopentanone produced unacceptably high swelling in each elastomer and is not considered suitable for use with these fuels. Analysis of the results showed that the swelling behavior is predominantly due to the polarity of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance, Fuel Economy, and Economic Assessment of a Combustion Concept Employing In-Cylinder Gasoline/Natural Gas Blending for Light-Duty Vehicle Applications

SAE International Journal of Engines

Argonne National Laboratory, United States-Thomas Wallner, Michael Pamminger, Riccardo Scarcelli, Christopher Powell, Severin Kamguia Simeu
FCA US LLC, United States-Asim Iqbal, Ron Reese
  • Journal Article
  • 03-12-03-0019
Published 2019-04-25 by SAE International in United States
In current production natural gas/gasoline bi-fuel vehicles, fuels are supplied via port fuel injection (PFI). Injecting a gaseous fuel in the intake port significantly reduces the volumetric efficiency and consequently torque as compared to gasoline. In addition to eliminating the volumetric efficiency challenge, direct injection (DI) of natural gas (NG) can enhance the in-cylinder flow, mixing, and combustion process resulting in improved efficiency and performance. A computational fluid dynamics (CFD) approach to model high-pressure gaseous injection was developed and validated against X-ray data from Argonne’s Advanced Photon Source. NG side and central DI of various designs and injection strategies were assessed experimentally along with CFD correlation. Significant effects on combustion metrics were quantified and explained via improved understanding of the in-cylinder flow effects due to NG injection. On-demand in-cylinder blending using E10 PFI and NG DI provides an additional lever to adjust in-cylinder turbulence as well as knock resistance across the engine speed and load range. NG DI improves part-load dilution tolerance due to higher in-cylinder turbulence and the high knock resistance of NG compared…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

General Motors LLC-Jeremie Dernotte
Sandia National Laboratories-Gerald Gentz, Chunsheng Ji, Dario Lopez Pintor, John Dec
Published 2019-04-02 by SAE International in United States
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge. Then, a second injection supplied the remainder of the fuel (20 - 30%) at a variable timing during the compression stroke, from 200° to 330°CA (0°CA = TDC-intake, 360°CA = TDC-compression) to provide controlled…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Flex Fuel Gasoline-Alcohol Engine for Near Zero Emissions Plug-In Hybrid Long-Haul Trucks

Massachusetts Institute of Technology-Daniel Cohn, Leslie Bromberg
Published 2019-04-02 by SAE International in United States
Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, could play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines could fall short in meeting these objectives, especially because of high emissions. In this paper we analyze the potential for a flex fuel gasoline-alcohol engine approach for a series hybrid powertrain. In this approach the engine would provide comparable (or possibly greater) efficiency than a diesel engine while also providing 90 around lower NOx emissions than present cleanest diesel engine vehicles. Ethanol or methanol would be employed to increase knock resistance. Engines that could be deployed in the relatively near term could also use high rpm operation and /or water injection, to allow operation with a very small amount of alcohol in addition to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Emissions from Low- and Mid-Level Blends of Anhydrous Ethanol in Gasoline

Future Fuel Strategies-Nigel Clark, Tammy Klein, David L. McKain
Thiggins Energy Consulting-Terry Higgins
Published 2019-04-02 by SAE International in United States
Typically ethanol is present in gasoline as a 10% blend by volume (E10), although E15, E85 (51 to 83%), and E0 are also available at selected stations. Numerous studies of tailpipe regulated emissions have been conducted to compare emissions from E10 and E0, and there is a growing body of literature addressing blends of E15 and higher. Isolating the effect of ethanol in a study is philosophically difficult, because the ethanol naturally displaces some hydrocarbons, because the ethanol interacts with the remaining gasoline, and because properties of mixing are often nonlinear. Some studies have used splash blending, simply mixing the ethanol with a reference gasoline to produce a blend for comparison to the reference. Others have used match blending, where the objective is to match selected properties of the blend to properties of a reference gasoline. Recent studies have examined both port injected and direct injected engines, the latter being both naturally aspirated and turbocharged, and differing test cycles have been used. In consequence, the conclusions of the studies are not uniform. This paper examines…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

Sandia National Laboratories-Dario Lopez Pintor, John Dec, Gerald Gentz
Published 2019-04-02 by SAE International in United States
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability.A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity. For fuels with NTC behavior, φ-sensitivity is greatest in the NTC region due to enhanced ITHR reactions, which explains the experimental correlation between φ-sensitivity and ITHR. Under engine conditions, higher intake pressure means lower intake temperature to balance the reactivity, and both effects increase the φ-sensitivity. However, φ-sensitivity remains almost constant if decreased oxygen concentration…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Influence of Elevated Injector Temperature on the Spray Characteristics of GDI Sprays

Michigan Technological University-Niranjan Miganakallu Narasimhamurthy, William Atkinson, Zhuyong Yang, Jeffrey Naber
Published 2019-04-02 by SAE International in United States
When fuel at elevated temperatures is injected into an ambient environment at a pressure lower than the saturation pressure of the fuel, the fuel vaporizes in the nozzle and/or immediately upon exiting the nozzle; that is, it undergoes flash boiling. It is characterized by a two-phase flow regime co-located with primary breakup, which significantly affects the spray characteristics. Under flash boiling conditions, the near nozzle spray angle increases, which can lead to shorter penetration because of increased entrainment. In a multi-hole injector this can cause other impacts downstream resulting from the increased plume to plume interactions.To study the effect of injector temperature and injection pressure with real fuels, an experimental investigation of the spray characteristics of a summer grade gasoline fuel with 10% ethanol (E10) was conducted in an optically accessible constant volume spray vessel. A gasoline direct-injection injector with six holes typical of a side-injection engine was studied. Optical diagnostics included high-speed photography with alternate frame imaging from Mie-Scattering and Shadowgraph techniques. Ambient conditions representing Early Injection (45°C, 1 bar) and Late Injection (180°C,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Parametric Study of the Flammability of Dieseline Blends with and without Ethanol

Concawe-Heather Hamje, John Rogerson
ENI Spa-Leonardo Pellegrini
Published 2019-01-15 by SAE International in United States
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa. Simulations were carried out for dieseline blends containing ethanol with two types of specifications - a fixed ethanol volume percent in the dieseline blend (0-50% ethanol), or blends containing specified EXX gasolines (E10, E20, E30, E40, E60 and E85) added to diesel fuel. Predicted Upper Flammability Limit (UFL) temperatures and blend DVPEs are presented for all…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Estimation of the Fuel Efficiency Potential of Six Gasoline Blendstocks Identified by the U.S. Department of Energy’s Co-Optimization of Fuels and Engines Program

SAE International Journal of Advances and Current Practices in Mobility

Oak Ridge National Laboratory-C. Scott Sluder
  • Journal Article
  • 2019-01-0017
Published 2019-01-15 by SAE International in United States
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks. A bioreformate surrogate blendstock was projected to provide the greatest increase in volumetric fuel economy and the lowest increase in efficiency. Tailpipe CO2 emissions for blends of the bioreformate surrogate were higher at all blend levels compared to the…
This content contains downloadable datasets
Annotation ability available