Your Selections

Fuel injection
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
To be published on 2019-11-21 by SAE International in United States
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of…
 

Effect of Fuel Type and Tip Deposits on Gasoline Direct Injection Fuel Injector End of Injection Spray Characteristics

Ford Motor Co., Ltd.-Mark Meinhart
Michigan Technological University-Robert A. Schroeter, Jeffrey Naber, Seong-Young Lee
  • Technical Paper
  • 2019-01-2600
To be published on 2019-10-22 by SAE International in United States
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work. Additionally, the impact of the test fuel used will also be evaluated. This work will present the large influence of fuel…
 

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

Mahindra Research Valley-Praveen Kumar Ramani, Bharathraj Jayaraman, Sangeetha Ramasamy Thiruppathi
  • Technical Paper
  • 2019-28-0028
To be published on 2019-10-11 by SAE International in United States
The automotive industries around the globe is undergoing massive transformation towards technological capability to meet stringent legislative norms on fuel economy and emission. It is a challenging process to meet the regulatory standards without compromising on performance. The torque delivered by the engine at wide open throttle position in a transient condition from low idle to higher engine rpm is known as dynamic torque, which always need not to follow the defined FTP curve. The engine dynamic torque plays a crucial part in performance benchmarking of a vehicle as a visualization parameter to set the project targets. There exist a few methodologies to measure the engine brake torque like direct measurement using torque transducer which adds complexity and cost to the vehicle, ECU measured torque based on amount of fuel injection and empirical calculation using known engine speed. Since every method is having their own capabilities, limitations and none of them are efficient to capture real transient torque behavior of an engine. This work elaborates about the role of dynamic torque on performance improvement and…
 

Experimental Investigation of Performance of Di Diesel Engine Fueled with Diesel Butanol Blends by Modification of Engine Operating Parameters

Hindustan Institute Of Tech. Science-Prabakaran Balasubramanian
  • Technical Paper
  • 2019-28-0112
To be published on 2019-10-11 by SAE International in United States
Butanol is an attractive fuel that can be utilized in compression ignition engines. This experimental study is to investigate the performance of direct injection diesel engine fueled with diesel-butanol blends with and without modification of engine operating parameters. This study includes three stages: Solubility of diesel butanol blends, property testing of the blends and engine test with & without modification of nozzle opening pressure (190 bar, 200 bar, 210 bar and 220 bar), fuel injection timing (23⁰, 26⁰,29⁰ and 32⁰before top dead centre) and compression ratio (16:1, 17.5:1,19:1 and 20.5:1). Optimal parameters among these were attained by using an L16 orthogonal array and Taguchi method. Results indicated that 210 bar of nozzle opening pressure, 26⁰ before the top dead centre of fuel injection timing and 19:1 compression ratio were found suitable for the blend containing 50% diesel and 50% butanol. This blend produced similar brake thermal efficiency, peak incylinder pressure, peak heat release rate, ignition delay, emissions of oxides of nitrogen and smoke. However, the emissions produced by this blend were found slightly higher compared…
 

Design and development of intake ports for 2-valve & 4-valve configurations for heavy duty off-highway Diesel Engine

College of Engineering-Sameer Tikar, Dileep Malkhede, Milankumar Nandgaonkar
  • Technical Paper
  • 2019-28-0042
To be published on 2019-10-11 by SAE International in United States
Keywords - Four valve intake port design, steady flow test, CFD numerical simulation, off-highway engines Abstract: Future emission limits for off-highway application engines need advanced power train solutions to meet stringent emissions legislation, whilst meeting customer requirements and minimising engineering costs. Development of diesel engines for off-highway application for different power segments need different intake port design solutions to optimise in-cylinder flow structure for efficient combustion. With adaptation of low pressure mechanical fuel injection system, intake port development becomes an important stage for reduction of emission formation at the source and improvement in fuel economy. In this paper, intake port design and development process is elaborated for two different power ratings of 75 hp and 120 hp of off-highway engine. 2-valve and 4-valve configurations are deployed for the same cylinder bore size. Considering the legislative emission limits for these two power segments of engines, intake port are designed for target swirl and flow performance within the same constraints of cylinder head bolting pattern and valve train actuation mechanism. For 2-valve configuration, a helical intake port…
 

How to Improve SI Engine Performances by Means of Supercritical Water Injection

University of Basilicata – Potenza 85100-Antonio Cantiani, Annarita Viggiano, Vinicio Magi
  • Technical Paper
  • 2019-24-0235
To be published on 2019-10-07 by SAE International in United States
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered. The model accounts for gas species properties (Janaf tables and CoolProp libraries) and includes valves opening/closing laws,…
 

Experimental Investigations on Engine-Out Emissions Sensitivity to Fuel Injection Pressure of a High-Performance DISI Single Cylinder Engine

Ferrari S.p.A.-Vincenzo Rossi, Nicola Silvestri, Massimo Medda
  • Technical Paper
  • 2019-24-0169
To be published on 2019-09-09 by SAE International in United States
In recent times complying with increasingly stringent emission regulations has become ever more challenging. While an efficient after-treatment system that includes gasoline particulate filter enables compliance with legislation requirements, lowering engine-out emissions by improving combustion system has to be considered as a crucial advantage not only in regard to pollutants emission control, but also performance. In this respect, high-performance enabling contents such as relatively large displacement, flow-capacity oriented intake ports and a limited stroke-to-bore ratio have significant drawbacks on the charge motion quality and as direct consequence on mixture formation and homogeneity. As a countermeasure, fuel injection system components as well as control strategies need to be substantially improved; on the control side the increase of fuel injection pressure coupled with optimized injection timing and splitting, has proved to be effective in reducing emissions, with special regard to particulate matter. This paper provides results of an experimental study investigating the effect of different fuel injection strategies on engine-out emissions, with special emphasis on the influence of very high fuel injection pressures (up to 50 MPa)…
 

Study of Fuel Octane Sensitivity Effects on Gasoline Partially Premixed Combustion Using Optical Diagnostics

King Abdullah Univ of Science & Tech-Hao Shi, Yanzhao An, Bengt Johansson
  • Technical Paper
  • 2019-24-0025
To be published on 2019-09-09 by SAE International in United States
Partially premixed combustion (PPC) is a low-temperature combustion (LTC) concept that could deliver higher engine efficiency, as well as lower NOx and soot emissions. Gasoline-like fuels are beneficial for air/fuel mixing process under PPC mode because they have superior auto-ignition resistance to prolong ignition delay time. In current experiments, the high octane number gasoline fuel E10 (US market used gasoline, RON=91) and low octane number GCI blend fuel (RON=77) were tested respectively in a full-transparent AVL single cylinder optical compression ignition (CI) engine. Aiming at investigating the fuel sensitivity on engine performances under different combustion modes as well as soot particle emissions, the engine operating parameters and emission data were analyzed from CI to HCCI (homogeneous charge compression ignition) via PPC (partially premixed combustion) by changing fuel injection timing. In addition, in order to get a deep insight of in-cylinder auto-ignition and combustion evolution process, planar laser-induced fluorescence (PLIF) imaging and high-speed natural flame luminosity (NFL) imaging techniques are used for visualizing fuel distribution, auto-ignition kernel development and combustion processes.
 

PIV and DBI Experimental Characterization of Air flow-Spray Interaction and Soot Formation in a Single Cylinder Optical Diesel Engine Using a Real Bowl Geometry Piston

GM Global Propulsion Systems-Alberto Vassallo
General Motors Italia S.r.l.-Francesco Concetto Pesce
  • Technical Paper
  • 2019-24-0100
To be published on 2019-09-09 by SAE International in United States
With demanding emissions legislations and the need for higher efficiency, new technologies for compression ignition engines are in development. One of them relies on reducing the heat losses of the engine during the combustion process as well as to devise injection strategies that reduce soot formation. Therefore, it is necessary a better comprehension about the turbulent kinetic energy (TKE) distribution inside the cylinder and how it is affected by the interaction between air flow motion and fuel spray. Furthermore, new diesel engines are characterized by massive decrease of NOx emissions. Therefore, considering the well-known NOx-soot trade-off, it is necessary a better comprehension and overall quantification of soot formation and how the different injection strategies can impact it. The present study aims to define a methodology to analyze the velocity field and consequently TKE distribution as well as to characterize soot formation inside of a real bowl geometry considering different operating conditions. For that purpose, two different optical techniques were simultaneously applied in this study. On the one hand, in-cylinder velocity fields were measured by using…
 

Large Eddy Simulation of an Ignition Front in a Heavy Duty Partially Premixed Combustion Engine

Lund University-Christian Ibron, Hesameddin Fatehi, Mehdi Jangi, Xue-Song Bai
  • Technical Paper
  • 2019-24-0010
To be published on 2019-09-09 by SAE International in United States
In partially premixed combustion engines high octane number fuels are injected into the cylinder during the late part of the compression cycle, giving the fuel and oxidizer enough time to mix into a desirable stratified mixture. If ignited by auto-ignition such a gas composition can react in a combustion mode dominated by ignition wave propagation. 3D-CFD modeling of such a combustion mode is challenging as the rate of fuel consumption can be dependent on both mixing history and turbulence acting on the reaction wave. This paper presents a large eddy simulation (LES) study of the effects of stratification in scalar concentration (enthalpy and reactant mass fraction) due to large scale turbulence on the propagation of reaction waves in PPC combustion engines. The studied case is a closed cycle simulation of a single cylinder of a Scania D13 engine running PRF81 (81% iso-octane and 19% n-heptane). Two injection timings are investigated; start of injection at -17 CAD aTDC and -30 CAD aTDC. One-equation transported turbulence sub-grid closure is used for the unresolved momentum and scalar fluxes…