Your Selections

Fuel injection
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine - A CFD Analysis

Indian Institute of Technology Madras, India-Ankit Ashokrao Raut, J.M. Mallikarjuna
  • Journal Article
  • 03-13-01-0002
To be published on 2020-02-28 by SAE International in United States
Higher water evaporation and proper water vapor distribution in the cylinder are very vital for improving emission and performance characteristics of water-injected engines. The concentration of water vapor should be higher and uniform near the walls of the combustion chamber and nil at the spark plug location. In direct water-injected engines, water evaporation, vapor distribution, and spray impingement are highly dependent on injector parameters, viz., water injector orientation (WIO), location, and spray angle. Therefore, in this article, a computational fluid dynamics (CFD) investigation is conducted to study the effects of water injector spray angle (WISA), and WIO on the water evaporation, emission, and performance characteristics of a four-stroke, wall-guided gasoline direct injection (GDI) engine. The WISA is varied from 10° to 35°, whereas the WIO is varied from 15° to 35° in steps of 5°. The water is injected in the compression stroke with an optimum injection pressure of 50 bar. Water-to-fuel (W/F) ratio and spark timing are fixed at their optimum values with a compression ratio (CR) of 13.5. The engine is operated at…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal Kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
To be published on 2019-11-21 by SAE International in United States
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Fuel Type and Tip Deposits on Gasoline Direct Injection Fuel Injector End of Injection Spray Characteristics

Ford Motor Co., Ltd.-Mark Meinhart
Michigan Technological University-Robert A. Schroeter, Jeffrey Naber, Seong-Young Lee
  • Technical Paper
  • 2019-01-2600
To be published on 2019-10-22 by SAE International in United States
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work. Additionally, the impact of the test fuel used will also be evaluated. This work will present the large influence of fuel…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Reduction of Emissions and Noise Variations by Adjustment of Fuel Injection Quantity

Mahindra Research Valley-Vagesh Shangar Ramani, Gurtej Bhachchu, Anbarasu Muthusamy
  • Technical Paper
  • 2019-28-0002
Published 2019-10-11 by SAE International in United States
Fuel injection system is a very sensitive structure deciding the optimum quantity of fuel to be injected for combustion process with acceptable accuracy. Learning of fuel quantity with respect to injection type, duration, number of injections requires proper correction values in order to reduce the variation which would result in dissimilar emissions and performance. Deviation of injection quantities are inevitable due to the variations in production tolerance of the injectors. This study focuses on the maximum reduction in fuel quantity which avoids deviation of soot emissions with three different sets of injectors statistically deviating from the ideal pilot fuel quantity. Three sets of injectors deviating from the mean value were chosen and named as Min sample, Mean sample and Max sample. Min sample was with lower injection quantity than the actual and max sample was with higher injection quantity than actual quantity. Engine was tested on dynamometer as per the standards with all the sets of injectors at part loads and the emission parameters were recorded at each load points. Heat release rate was observed…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

Mahindra Research Valley-Praveen Kumar Ramani, Bharathraj Jayaraman, Sangeetha Ramasamy Thiruppathi
  • Technical Paper
  • 2019-28-0028
Published 2019-10-11 by SAE International in United States
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters. Though this calculation method is relatively easy, it is not an accurate method. Moreover, it would not be possible to extract engine information of benchmark vehicles. Since every…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Investigation of Performance of Di Diesel Engine Fueled with Diesel Butanol Blends by Modification of Engine Operating Parameters

Hindustan Institute Of Tech. Science-Prabakaran Balasubramanian
  • Technical Paper
  • 2019-28-0112
Published 2019-10-11 by SAE International in United States
Butanol is an attractive fuel that can be utilized in compression ignition engines. This experimental study is to investigate the performance of direct injection diesel engine fueled with diesel-butanol blends with and without modification of engine operating parameters. This study includes three stages: Solubility of diesel butanol blends, property testing of the blends followed by an engine test with and without modification of nozzle opening pressure (190 bar, 200 bar, 210 bar and 220 bar), fuel injection timing (230, 260, 290 and 320 before top dead centre) and compression ratio (16:1, 17.5:1,19:1 and 20.5:1). Optimal parameters among these were attained by using an L16 orthogonal array and Taguchi method. Results indicated that 220 bar of nozzle opening pressure, 260 before the top dead centre of fuel injection timing and 19:1 compression ratio were found suitable for the blend containing 50% diesel and 50% butanol. This blend produced similar brake thermal efficiency, peak incylinder pressure, peak heat release rate, ignition delay, emissions of oxides of nitrogen and smoke. However, the emissions produced by this blend were…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

How to Improve SI Engine Performances by Means of Supercritical Water Injection

University of Basilicata – Potenza 85100-Antonio Cantiani, Annarita Viggiano, Vinicio Magi
Published 2019-10-07 by SAE International in United States
The efficiency of ICEs is strongly affected by exhaust gases and engine cooling system heat losses, which account for about 50% of the heat released by combustion. A promising approach is to transfer this exhaust heat to a fluid, like water, and inject it into the combustion chamber under supercritical conditions. In such a way, the recovered energy is partially converted into mechanical work, improving both engine efficiency and performance.A quasi-dimensional model has been implemented to simulate an SI engine with supercritical water injection. Specifically, a spark ignition ICE, four-stroke with Port Fuel Injection (PFI) has been considered. The model accounts for gas species properties, includes valves opening/closing, wall heat transfer, a water injection model and a combustion model. The influence of some injection parameters, i.e. Water/Fuel ratio (W/F), Start Of water Injection (SOI) and Water Injection Duration (WID), on engine performances and efficiency is discussed in details.The results show that an increase of W/F ratio has the strongest impact on the performances with respect to SOI and WID, i.e. higher W/F ratio, SOI closer…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Comparison of Regulated and Unregulated Emissions and Fuel Economy of SI Engines with Three Fuels: RON95, M15, and E10

SAE International Journal of Fuels and Lubricants

Israel Institute of Technology, Israel-Gideon Goldwine, Eran Sher
University of Toronto, Canada-Diana Sher
  • Journal Article
  • 04-12-03-0013
Published 2019-10-04 by SAE International in United States
This article focuses on a comparative research of the emissions discharged from four vehicles equipped with SI engines, which comply with different emission control systems (Euro 6, Euro 5, and Euro 3). The vehicles used for this work were installed with two different fuel injection technologies (direct injection and port fuel injection) and were operated with three different types of fuels (RON 95, M15, and E10). The tests were performed at the Joint Research Center (JRC) in Ispra using a state-of-the-art emissions test facility according to the European emissions legislation. The test bench included a chassis dynamometer and two different driving cycles were used: NEDC and US06. The main conclusions observed by this article are: (1) Emissions levels from vehicles fueled with M15 are similar to or lower than from those fueled with RON95. (2) Using M15 has the potential to decrease carbon dioxide emissions and to save fuel on an energetic basis. (3) PM emissions are lower for gasoline/alcoholic fuels. (4) No statistically significant effects on carbonyl emissions were found with M15.
This content contains downloadable datasets
Annotation ability available
new

Diesel Engine Technology

  • Professional Development
  • PD730812
Published 2019-09-30

Regulations and consumer expectations have shaped the modern diesel engine. Enhancements have resulted in more power, fuel efficiency, reliability, and lower emissions, an indication that diesels will remain popular in the future. This technology is most widely used in commercial applications, such as trucking, shipping, construction, busing, and more. Each year, many light and medium duty car and truck manufacturers introduce diesel vehicles worldwide. A fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Large Eddy Simulation of an Ignition Front in a Heavy Duty Partially Premixed Combustion Engine

Lund University-Christian Ibron, Hesameddin Fatehi, Mehdi Jangi, Xue-Song Bai
Published 2019-09-09 by SAE International in United States
In partially premixed combustion engines high octane number fuels are injected into the cylinder during the late part of the compression cycle, giving the fuel and oxidizer enough time to mix into a desirable stratified mixture. If ignited by auto-ignition such a gas composition can react in a combustion mode dominated by ignition wave propagation. 3D-CFD modeling of such a combustion mode is challenging as the rate of fuel consumption can be dependent on both mixing history and turbulence acting on the reaction wave. This paper presents a large eddy simulation (LES) study of the effects of stratification in scalar concentration (enthalpy and reactant mass fraction) due to large scale turbulence on the propagation of reaction waves in PPC combustion engines. The studied case is a closed cycle simulation of a single cylinder of a Scania D13 engine running PRF81 (81% iso-octane and 19% n-heptane). Two injection timings are investigated; start of injection at -17 CAD aTDC and -30 CAD aTDC. One-equation transported turbulence sub-grid closure is used for the unresolved momentum and scalar fluxes…
This content contains downloadable datasets
Annotation ability available