Your Selections

Show Only


File Formats

Content Types











Replacing twin electric fan radiator with Single fan radiator

Tata Technologies Ltd-Gaurav Soni, Aashish Bhargava, Vivek Anami, Tushar Warkhade
  • Technical Paper
  • 2019-28-2381
To be published on 2019-11-21 by SAE International in United States
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction. Further Cooling system performance of engine is evaluated along with Fuel efficiency; results are compared with present configuration.

Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application

Mahindra & Mahindra, Ltd.-Gurpreet Singh, Prabhakaran Arumugam, Rakesh Sharma
Mahindra Research Valley-Shreekant Srivastava
  • Technical Paper
  • 2019-28-0015
To be published on 2019-10-11 by SAE International in United States
Implementation and Experimentation of effective clog removal method in tractors for enhanced condenser life and Air Conditioning performance during Reaper application Keywords - Tractor HVAC, Condenser clogging, Trash removal method. Research and/or Engineering Questions/Objective Tractors in the field are exposed to adverse operating conditions and are surrounded by dust and dirt. The tiny, thin and sharp broken straw and husks surround the system in reaper operation. The tractors which are equipped with air conditioning system tend to show detrimental effects in cooling performance. The compressor trips frequently by excess pressure developed in the system due to condenser clogging and hence cooling performance is reduced considerably. The air conditioning performance reduces due to the clogged condenser located on the top roof compartment of operator's cabin, which is still better design than keeping in front of radiator where clogging happens every hour and customer need to stop the tractor to clean it with specific blower. Since we designed package of condenser on the top of the roof where heavy particles won't reach easily so, condenser choking/clogging every…

Optimizing Cooling Fan Power Consumption for Improving Diesel Engine Fuel Efficiency Using CFD Technique

SAE International Journal of Engines

Tafe Motors and Tractor Ltd., India-Ajay Nain
  • Journal Article
  • 03-12-04-0024
Published 2019-06-11 by SAE International in United States
Fan cooling system of an air-cooled diesel engine is optimized using 3D CFD numerical simulation approach. The main objective of this article is to increase engine fuel efficiency by reducing fan power consumption. It is achieved by optimizing airflow rates and flow distribution over the engine surfaces to keep the maximum temperature of engine oil and engine surfaces well within the lubrication and material limit, respectively, at the expense of lower fan power. Based on basic fan laws, a bigger fan consumes lesser power for the same airflow rate as compared to a smaller fan, provided both fans have similar efficiency. Flow analysis is also conducted with the engine head and block modeled as solid medium and fan cooling system as fluid domain. Reynolds-averaged Navier-Stokes turbulence (RANS) equations were solved to get the flow field inside the cooling system and on the engine liner fins. The Moving Reference Frame approach was used for simulating the rotation of a fan. Cowl geometry was modified for providing better guidance to flow over engine surfaces and to get…
Datasets icon
Annotation icon

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

NASA Glenn Research Center-Ashlie Flegel, Michael King
Vantage Partners Limited-David L. Rigby, William Wright
Published 2019-06-10 by SAE International in United States
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan. A distribution of particle sizes is introduced upstream, based on the distribution measured during the test. Predicted collection…
Datasets icon
Annotation icon

An Ice Shedding Model for Rotating Components

ANSYS Inc.-Shezad Nilamdeen, Yue Zhang, Isik Ozcer, Guido S. Baruzzi
Published 2019-06-10 by SAE International in United States
A CFD simulation methodology is presented to evaluate the ice that sheds from rotating components. The shedding detection is handled by coupling the ice accretion and stress analysis solvers to periodically check for the propagation of crack fronts and possible detachment. A novel approach for crack propagation is highlighted where no change in mesh topology is required. The entire computation from flow to impingement, ice accretion and crack analysis only requires a single mesh. The accretion and stress module are validated individually with published data. The analysis is extended to demonstrate potential shedding scenarios on three complex industrially-relevant 3D cases: a helicopter blade, an engine fan blade and a turboprop propeller. The largest shed fragment will be analyzed in the context of FOD damage to neighboring aircraft/component surfaces.
Datasets icon
Annotation icon

An Experimental Study to Evaluate Hydro-/Ice-Phobic Coatings for Icing Mitigation over Rotating Aero-engine Fan Blades

Iowa State University-Linchuan Tian, Yang Liu, Linkai Li, Hui Hu
Published 2019-06-10 by SAE International in United States
Ice accretion on aero-engines, especially on the fan blades, is the very hazardous icing incident due to the potential performance degradation of jet-engines. In the present study, an experimental investigation was conducted to examine the performance of ice-phobic coatings for jet-engine fan icing mitigation. The experimental study was performed in the unique Icing Research Tunnel at Iowa State University (ISU-IRT) with a scaled engine fan model operated under wet glaze and dry rime ice conditions. To evaluate the effects of anti-icing coatings and to acquire the important details of ice accretion and shedding process on fan blade surfaces, a “phase-locked” imaging technique was applied with a high-resolution imaging system. The power input required to drive the engine fan model rotating at a constant prescribed speed was also measured during the ice accretion experiment. It was found that both super-hydrophobic surface (SHS) and ice-phobic coating have its advantage in engine anti-icing. SHS facilitated the blades surface with much less ice, under both glaze icing and rime icing conditions, while ice-phobic coating prevents the large ice chunk…
Datasets icon
Annotation icon

Particle Size Measurements from the 2018 Honeywell Uncertified Research Engine Test in the NASA Propulsion System Laboratory

Droplet Measurement Technologies-Darrel Baumgardner
HX5 Sierra, LLC-Timothy Bencic
  • Technical Paper
  • 2019-01-1928
Published 2019-06-10 by SAE International in United States
The particle size measurements from the Honeywell Uncertified Research Engine Test in the NASA Propulsion System Laboratory conducted in 2018 will be presented. The work will focus on describing the experimental description, the processing and analysis methods, and final results for select cases acquired during ice crystal cloud conditions. The measurements presented will include data acquired from the Artium Technologies, Inc. High Speed Imaging instruments, the Droplet Measurement Technologies, Inc. Back-scatter Cloud Probes with Polarization Detection, and the NASA Light Extinction Probes positioned at several locations both upstream of the fan, in the direct-connect duct, and downstream of the fan, in the engine bypass.

Design and Experiment on Aircraft Electromechanical Actuator Fan at Different Altitudes and Rotational Speeds

SAE International Journal of Aerospace

Air Force Research Laboratory, USA-Q.H. Leland
North Carolina A&T State University, USA-E. Gyasi, J.P. Kizito
  • Journal Article
  • 01-12-01-0003
Published 2019-06-07 by SAE International in United States
For electromechanical actuators (EMAs) and electronic devices cooling on aircraft, there is a need to study cooling fan performance at various altitudes from sea level to 12,000 m where the ambient pressure varies from 1 to 0.2 atm. As fan static pressure head is proportional to air density, the fan’s rotational speed has to be increased significantly to compensate for the low ambient pressure of 0.2 atm at the altitude of 12,000 m. To evaluate fan performance for EMA cooling, a high-rotational-speed, commercially available fan made by Ametek with a diameter of ~82 mm and ~3 m3/min zero-load open cooling flow rate when operating at 20,000 rpm was chosen as the baseline. According to fan scaling laws, this fan was expected to meet the cooling needs for an EMA when operating at 0.2 atm. Using a closed flow loop, the performance of the fan operating in the above ambient pressure range and at a rotational speed between 15,000 and 30,000 rpm was evaluated. Unexpectedly, at 0.2 atm, the Ametek fan was able to produce only…
Datasets icon
Annotation icon

Cooling Fan Selection in Power Car Application Using CFD and FEA Analysis

Cummins Inc.-Mukesh Kumar, Vitthal Khandagale, Prashant Kelkar, Rohit Saha
Published 2019-04-02 by SAE International in United States
This paper describes the methodology used to select an application-based fan that has optimum operating characteristics in terms of cooling air flow rate, fan power, and noise. The selected fan is then evaluated for structural strength.To evaluate different fans, complete rail coach under-hood simulations were carried out using steady-state 3D computational fluid dynamics (CFD) approach. These simulations considered an actual, highly non-uniform flow field. For each fan option, fan power, air flow rate, and surface acoustic power was evaluated. Pressure profiles on the fan blades were studied to assess the effect of non-uniform downstream air passage designs. Surface acoustic power was calculated using broadband noise source (BNS) model in ANSYS Fluent®. Surface pressure profiles over fan blades imported from 3D CFD were used in finite element analysis (FEA) in ANSYS. Analyses were carried out for blade linear and non-linear properties. Equivalent fully reversed (EFR) stress was calculated based on an internal code that uses Goodman theory.It can be concluded from simulation study that the fluid structural coupled approach can be used to predict and optimize…
Datasets icon
Annotation icon

Investigation of the Acoustic Surface Power on a Cooling Fan Using the Mesh Morpher Optimizer

Advanced Safety & Energy Inc.-Mike Kheirallah
Ford Motor Company-Abdallah Hamieh
Published 2019-04-02 by SAE International in United States
A cooling fan is an essential device of the engine cooling system which is used to remove the heat generated inside the engine from the system. An essential element for successful fan designs is to evaluate the pressure over the fan blade since it can generate annoying noices, which have a negative impact on the fan’s performance and on the environment. Reducing the acoustic surface power will assist in building improved designs that comply with standards and regulations in achieving a more quiet environment. The usage of computational fluid dynamics (CFD), with support of mesh morphing, can provide simulation study for optimizing the shape of a fan blade to reduce the aeroacoustic effects. The investigation process will assist in examining and analyzing the acoustic performance of the prototype, impact of different parameters, and make a solid judgement about the model performance for improvement and optimization.This paper proposes a new strategy in evaluating the pressure distribution over a fan blade. CFD techniques and optimization methodology were applied to improve the acoustic surface power distribution over a…
Annotation icon