Your Selections

Exhaust manifolds
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports During Steady and Transient Conditions

Universitat Politècnica de València-Alberto Broatch, Pablo Olmeda, Jaime Martin, Amin Dreif
  • Technical Paper
  • 2020-37-0002
To be published on 2020-06-23 by SAE International in United States
In the present work, a study about the impact on engine performance, fuel consumption and turbine inlet and outlet temperatures adding thermal insulation to the exhaust ports, manifold and pipes before the turbocharger of a 1.6L Diesel engine is presented. First, a 0D/1D model of the engine was developed and thoroughly validated by means of an extensive testing campaign. The validation was performed by means of steady state or transient running conditions and in two different room temperatures: 20ºC and -7ºC d. Once the validation was complete, in order to quantify the significance of adding thermal isolations, the simulations were performed setting the exhaust air path before the turbine as adiabatic. This is evaluated the maximum gain of the technology. Results showed that the thermal insulation proved to have a great potential in regard to T4 increase since this would reduce the warm up time of the aftertreatment systems. However, its impact on engine efficiency was limited in both steady and transient conditions.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation of Driving Cycles by Means of a Co-Simulation Framework for the Prediction of IC Engine Tailpipe Emissions

Exothermia SA-Vasileios Tziolas, Nikolaos Zingopis
Politecnico di Milano-Gianluca Montenegro, Angelo Onorati, Gianluca D'Errico, Tarcisio Cerri, Andrea Marinoni
  • Technical Paper
  • 2020-37-0011
To be published on 2020-06-23 by SAE International in United States
The current European legislation concerning pollutant emissions from IC engine vehicles is very stringent and demanding. In addition, the CO2 fleet emission must obey to a significant reduction path during the next decade, to cope with the prescribed targets recently agreed. The prediction of pollutant emissions from IC engines has been a challenge since the introduction of the emission regulation legislation. During the last decade, along with the more tightening limits and increased public concern about air quality, the capability of simulating different operating conditions and driving cycles with an acceptable computational effort has become a key feature for modern simulation codes. The role of 1D thermo-fluid dynamic simulation models is extremely important to achieve this task, in order to investigate the performances of the next generation of IC engines working over a wide range of operating conditions, under steady-state and transient conditions. This work is based on the idea of integrating two different 1D simulation tools in a co-simulation environment, realizing a strict numerical coupling between the two codes. The main goal is to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

Maruti Suzuki India, Ltd.-Amandeep Singh, Jaspreet Singh, Sanjay Poonia, Ankit Jalan, Narinder Kumar, Shailender Sharma, Deepali Agarwal, Kushal Puri
  • Technical Paper
  • 2020-01-0169
To be published on 2020-04-14 by SAE International in United States
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets.In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst. Additionally, this technology also helps in cost saving due to reduced parts count, in engine weight reduction, improve the response and increase fuel economy during the cold start stage of Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

On-Engine Performance Evaluation of New-Concept Turbocharger Compressor Housing Design

Imperial College London-Ricardo F. Martinez-Botas
Mitsubishi Heavy Industries, Ltd.-Takao Yokoyama, Yutaka Fujita, Motoki Ebisu
  • Technical Paper
  • 2020-01-1012
To be published on 2020-04-14 by SAE International in United States
Following the market demands in finding the niche balance between engine performance and legislation requirement, a new compressor scroll has been designed for small to medium size passenger cars. The design adopts a slight deviation from the conventional method, thus resulting in broader surge margin and better efficiency at off-design region. This paper presents the design of the new compressor scroll and its performance validation. The new compressor scroll is coupled to a standard wheel and tested on the cold gas stand followed by the on-engine testing. The testing program focused on back-to-back comparison with the standard compressor scroll, as well as identifying on-engine operational regime with better brake specific fuel consumption (BSFC) and transient performance. A specially instrumented 1.6L gasoline engine was used for this study. The engine control unit configurations are kept constant for both the compressor testing. The intake and exhaust manifold has been customized to fit the turbochargers and kept identical between the standard and new compressor scroll installations. The turbocharger with new compressor scroll design is found to work at…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The New 4-Cylinder Turbocharged GDI Engine from SAIC Motor

SAIC Motor Technical Center-Zheng Xu, YinSheng Ping, Chuanhui Cheng, Xiaomao Zhang, Haiting Yin, WeiJun Li, DongBo Cai, ShaoMing Wang, YanJun Wang, Yang Yang, Yingzhen Wang, YaJun Zhang
  • Technical Paper
  • 2020-01-0836
To be published on 2020-04-14 by SAE International in United States
SAIC Motor Corporation Limited (SAIC Motor) has developed a new 1.5 L 4-cylinder turbocharged gasoline direct injection engine to meet the market demand and increasingly stringent requirement of CAFE and tail-pipe emission regulations. A series of advanced technologies for improving engine fuel economy, engine-out emission, torque and power output specially low end torque performance have been employed, such as: central gasoline direct injection, integrated exhaust manifold, high tumble combustion system, Miller Cycle, cooled external EGR, 35MPa fuel injection system, multi-hole injector with variable hole size design, efficient turbo charging with electric wastegate (EWG), etc. As a result, the engine is able to achieve over 39% brake thermal efficiency (BTE), as well as substantial fuel consumption reduction in vehicle driving cycle. It delivers 275 Nm maximum torque and 127kW rated power, with fast low end torque response. By integrating the 35MPa high pressure fuel injection system and optimized multi-hole fuel spray, the engine-out particulate numbers (PN) emission is reduced by more than 70% over a previous base engine with 20Mpa fuel injection system. The vehicle equipped…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimal Control of Mass-transport Time-delay Model in a Low-pressure EGR

GIPSA-lab-Emmanuel Witrant
Grenoble INP-Didier Georges
  • Technical Paper
  • 2020-01-0251
To be published on 2020-04-14 by SAE International in United States
This paper presents the control-oriented model and control design of the burned gas ratio(BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine, due to the redirection of burned gases to the intake path by the low-pressure EGR. Based on a nonlinear AMESim model of the engine, the BGR in the intake manifold is modeled as a state-space output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to inequality constraints because they are positive percentages lying between 0 and 100. The objective of the control problem is to track a reference output profile of the BGR in the intake manifold, taking into account the transport delay and the state(output) and input constraints of the system. In this aim, two indirect optimal control approaches are implemented…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multiple 3D-DIC Systems for Measuring the Displacements and Strains of an Engine Exhaust Manifold

FCA US LLC-Wensheng Zhang, Jim Chen, Owais Iqbal, Kanwerdip Singh
Oakland University-Junrui Li, Lianxiang Yang, Gary Barber
  • Technical Paper
  • 2020-01-0540
To be published on 2020-04-14 by SAE International in United States
In this study, a unique multi-camera three-dimensional digital image correlation (3D-DIC) system was designed and applied to an engine dynamometer cell to measure the displacement and strain of the exhaust manifold while an engine was running in a durability test. In the engine dynamometer cell, the ambient temperature varies from 25°C to 80°C~100°C cyclically and the exhaust manifold experiences high temperatures up to 900°C with high frequency vibrations. In order to obtain reliable data under such conditions, two 3D-DIC systems were designed and set up in the engine dynamometer. One is a high-speed 3D-DIC system, consisting of cameras with a sampling rate of 1250 frames per second. It was used to measure the local displacement of the bolted joint in the exhaust manifold. The high-speed measurement system is able to record the behavior of the bolt during the thermal cycles. The other system is a high-resolution 3D-DIC system, consisting of two cameras with a resolution of five-mega-pixels. It was used to acquire the displacement and strain fields of the entire exhaust manifold. A Linear Variable…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Failure Prediction and Design Optimization of Exhaust Manifold based on CFD and FEM Analysis

AVL Powertrain Engineering, Inc.-Ho Teng
Jiangling Motors Co., Ltd.-Xuwei Luo, Pingping Zou, Xiaochun Zeng, Xiaojun Yuan, Bin Li, Yingtao Xu
  • Technical Paper
  • 2020-01-1166
To be published on 2020-04-14 by SAE International in United States
A thermo-mechanical fatigue analysis was conducted based on a coupled Finite Element Analysis (FEA) - Computational Fluid Dynamics (CFD) method on the crack failure of the exhaust manifold for an inline 4-cylinder turbo-charged diesel engine under the durability test. In the this analysis, the temperature-dependent material properties were obtained from measurements and the model was calibrated with comparison of the predicted exhaust manifold temperatures with the on-engine measurements under the same engine load condition. Temperature and stress/strain distributions in the exhaust manifold were predicted with the calibrated model. Analysis results showed that the cracks took place at locations with high plastic deformations, suggesting that the cause of the failure be thermo-mechanical fatigue (TMF). Using the equivalent plastic strain (PEEQ) as the indicator for thermal mechanical fatigue, three exhaust manifold design revisions were carried out by CAE analysis. And the best one was chosen for prototype. Later tests showed that this new design passed the engine durability test successfully.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Scavenging Phenomena Based Post-oxidation in Exhaust Manifold of a Turbocharged Spark Ignition Engine

Chiba University-Madan Kumar, Tatsuya Kuboyama, Naohiro Hasegawa, Yasuo Moriyoshi
  • Technical Paper
  • 2019-01-2197
Published 2019-12-19 by SAE International in United States
In this research, a novel methodology for the post-oxidation in a turbocharged spark ignition (SI) engine is proposed and investigated that can improve the emissions along with the reduction in turbo-lag. In this research, both simulation and experimental activities are performed.The 1-D simulation model was used for the identification of efficient scavenging. Thereafter, experimental validation tests for modeling and post oxidation were conducted on a 4-cylinder turbocharged SI engine. From the results, it was revealed that efficient scavenging and post-oxidation can be obtained at lower speed and higher load. The enthalpy in exhaust manifold increased due to the post-oxidation reaction which in turn increased the temperature and pressure of the exhaust gases and hence emissions reduced. Also, due to the increased enthalpy at turbine upstream, the turbocharger speed increased and as a consequence, reduction in the turbo-lag was observed. It was also noted that the post-oxidation is limited at higher load and overlap in an inline 4-cylinder engine due to the strong scavenging which increased the cooling effect in in-cylinder and exhaust manifold due to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigations on CO2 Recovery from Engine Exhaust Using Adsorption Technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
Published 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon dioxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is an energy-consuming process compared to the catalytic converters. The best way to reduce CO2 is to capture it from the source, store it and use it for industrial applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. In comparison to other CO2 separation methods, adsorption technique consumes less work and energy. Moreover, the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to store the zeolite and it is attached to the exhaust manifold. The selected engine was a single-cylinder Briggs and Stratton petrol engine. The experiments were conducted in two…
This content contains downloadable datasets
Annotation ability available