Your Selections

Exhaust emissions
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
To be published on 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to effectively store the zeolite and it is attached to the exhaust port of the engine. The selected engine…
 

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…
 

Comparative Experimental Investigation of Thumba and Argemone oil Based Dual Fuel Blend in a Diesel Engine for its Performance and Emission Characteristics

Lovely Professional University-Sumit Kanchan
University of Kashmir-Shahid Qayoom
  • Technical Paper
  • 2019-28-2375
To be published on 2019-11-21 by SAE International in United States
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus Colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like ATB10 (5% Argemone, 5% Thumba and 90% Diesel), ATB20, ATB30 and ATB40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings. In this exertion, performance and emission parameters were evaluated. The performance parameters like brake thermal efficiency (BTE), indicated power, brake specific fuel consumption (BSFC), brake mean effective pressure, indicated mean effective pressure and indicated thermal efficiency were studied and…
 

Development of Diesel Particulate NOx Reduction DPNR System for Simultaneous Reduction of PM and NOx in Diesel Engines

A R A I-E. Parthiban, Aatmesh Jain, Kamalkishore Chhaganlal Vora
  • Technical Paper
  • 2019-28-2554
To be published on 2019-11-21 by SAE International in United States
The Diesel Particulate NOx Reduction (DPNR) system is used for simultaneous reduction of PM and NOx in diesel engine. DPF is used to trap particulate matter in diesel engines. NOx absorber technology removes NOx in a lean (i.e. oxygen rich) exhaust environment for both diesel and gasoline lean-burn GDI engines. The NOx storage and reduction catalyst is uniformly coated on the wall surface and in the fine pores of a highly porous filter substrate. Combination of these two components in the DPNR results in a compact size of the system. The base diesel engine model validated with pressure crank angle diagram and performance parameters such as Indicated mean effective pressure. This base engine’s exhaust emission is given as an input to the DPNR system. The surface reaction is connected to the DPF through chemcon template. The surface reaction is NOx storage and reduction chemical kinetics like Lean NOx Trap. The modelling of DPNR and Base engine is done using GT-SUITE. This paper describes about the 1D simulation of DPNR system with base diesel engine model…
 

Modeling for collective effect of Muffler geometric modifications and blended microalgae fuel use on exhaust performance of a four-stroke diesel engine: A Computational Fluid Dynamics Approach

Lovely Professional University-Sumit Kanchan, Rajesh Choudhary PhD, Chavagani Brahmaiah
University of Kashmir-Shahid Qayoom
  • Technical Paper
  • 2019-28-2377
To be published on 2019-11-21 by SAE International in United States
Engine performance significantly depends on the effective exhaust of the combustion gases from the muffler. With stricter BSVI norms more efficient measures has to be adopted to reduce the levels of exhaust emissions from the exhaust to the atmosphere. Muffler along with reducing the engine noise, is intended to control the back pressure as well. Back pressure change has significant effect on muffler temperature distribution which affects the NOx emission from the exhaust. Many research communications have been made to reduce the exhaust emissions like HC, CO and CO2 from the exhaust by using different generation biofuels as alternate fuel, yet they have confronted challenges in controlling the NOx content from exhaust. This work presents the combined effect of Muffler geometry modifications and blended microalgal fuel on exhaust performance with an aim to reduce NOx emission from the exhaust of a four-stroke engine. In this exertion, computational fluid dynamics model is developed to analyze the effect of muffler geometry modification on vital exhaust parameters of an engine. The engine is powered with blend of microalgae…
 

FI system of single cylinder Engine for motorcycle

Mikuni Corp.-AKIRA TAKAHASHI
  • Technical Paper
  • 2019-28-2527
To be published on 2019-11-21 by SAE International in United States
In India, due to the progress of air pollution problem in major cities, exhaust emission regulations had been planned to become stricter for motorcycles as so as automobile. And effective date has been also announced. The fuel supply system to small displacement engines of motorcycles used to be a carburetor, however, to meet the regulations it should be replaced by electronic fuel injection (FI). This paper introduces "i-Beat II system", the FI system for small motorcycles developed by Mikuni, meant for single cylinder and small displacement gasoline engine which accounts for more than 90% of the motorcycle market.  We developed adaptable FI system for motorcycles with simplified structure of the system, more suitable logic for single cylinder engine, and then achieved emission regulation also better drivability, fuel consumption.
 

EMISSION REDUCTION OF A DIESEL ENGINE FUELED WITH BLENDS OF BIOFUEL UNDER THE INFLUENCE OF 1,4-DIOXANE AND RICE HUSK NANO PARTICLE.

Delphi TVS, Chennai.-Santiago josan
Madras Institute of Technology, Chennai-Mebin Samuel P, Devaradjane G PhD
  • Technical Paper
  • 2019-28-2387
To be published on 2019-11-21 by SAE International in United States
Research Objectives. In this modern era increase in Pollution became a huge impact in the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). Methodology In this study, first the bio oil is extracted, Then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a direct injection compression ignition engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer. Then 0.1% of rice husk nano additive is added with the fuel blend followed by 3%, 6% of 1,4-Dioxane blended with the previous blend and its performance (BTE, BSFC) and emission (HC, CO, CO2, NOx,…
 

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

Sharda Motor industries limited ( R&D )-Rajadurai S
  • Technical Paper
  • 2019-28-2539
To be published on 2019-11-21 by SAE International in United States
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered. Heat protection of about 75% is achieved ( from 614°C to 140°C) using different insulation materials. Sheet metal thicknesses from 0.15 mm to 1 mm with different manufacturing processes are used in the wrap around, closed and open type protections. Computational simulation and…
 

Effects of Dual biodiesel on a LHR-DI diesel engine performance, emission and combustion characteristics

MLR Institute of Technology-Sivakumar Ellappan
University College Of Engineering-Silambarasan Rajendran
  • Technical Paper
  • 2019-28-0176
To be published on 2019-10-11 by SAE International in United States
Importance of this investigation is 100% biodiesel make use as fuel for low heat rejection diesel engine. Due to this reason bio-fuels namely, eucalyptus oil and paradise oil were selected and used as dual fuel. Conventional engine hardware parts were coated with lanthana-doped yttria-stabilized zirconia (the doping of YSZ coatings with small amount of La2O3) with a thickness of 300 µm, so as to analyses the operating parameters of paradise oil–eucalyptus oil blends. Tests run were replicated on the conventional diesel engine and outcomes were compared. Test outcomes confirmed that the major intention of this research was attained as engine operating parameters like, brake thermal efficiency, exhaust gas temperature were increase with decrease of fuel consumption. In addition, engine emissions of HC, CO and smoke were reduce with exception of NOx for LHR diesel engine than conventional engine.
 

Optimization of In-Cylinder Flow and Swirl Generation Analysis for a Naturally Aspirated Diesel Genset Engine for Emission reduction through Intake Port Design

College of Engineering-Sameer Tikar, Dileep Malkhede, Milankumar Nandgaonkar
  • Technical Paper
  • 2019-28-0024
To be published on 2019-10-11 by SAE International in United States
KEYWORDS - Intake port design, In-cylinder flow, steady flow test, CFD numerical simulation, emission reduction & fuel economy Engine in-cylinder flow structure governs the combustion process and directly influences emission formation and fuel consumption at the source. In naturally aspirated DI diesel engine combustion process, coupled with low pressure mechanical fuel injection systems set different requirements for inlet port performance. In-cylinder swirl needs to be optimized for efficient combustion to meet emission levels and fuel consumption targets. Thus, intake port design optimization process becomes a vital requirement. In the present paper intake port design optimization is carried out for single cylinder naturally aspirated engine using mechanical fuel injection systems. The objective is to investigate in-cylinder flow field developed by intake port designs. Study the effects of geometrical details of various port cross sections on flow velocity and pressure fields and establish a relationship with intake port performance parameters i.e. swirl and flow coefficient. Further, the impact of these new intake port designs on off-highway diesel engine emissions and performance is evaluated. Thus the focus is…