Your Selections

Engine control systems
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessing the Engine-Out Pollutant Emissions of a S.I. Engine for Hybrid Powertrain Applications

Université de Bourgogne Franche-Comté-Jérémy Pelluet, Alan Keromnes, Luis Le Moyne
Université de Lyon - IFSTTAR AME ECO7-Alice Guille des buttes, Bruno Jeanneret
  • Technical Paper
  • 2020-37-0016
To be published on 2020-06-23 by SAE International in United States
Car manufacturers are introducing more and more hybrid powertrains in order to reach CO2 emissions targets and answer increasingly stringent pollutant emission regulations such as unburned hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter. The addition of an electric engine to a thermal engine introduces an additional degree of freedom in the energy management of the powertrain since two energy sources are available. Thus, the energy management system must also account for regulated pollutant emissions when devising an optimal energy management strategy to avoid a pollutant emission increase due to CO2 only driven optimisation. It is therefore necessary to model the influence of thermal engine operating conditions such as load and speed on these emissions to evaluate their concentration in the exhaust gases. This study presents an empiric modelling approach based on an extensive parametric study using a spark-ignition port-injection four-cylinder engine. Such a model intend to be used in the context of hybrid powertrain optimization. In order to reduce the computing costs required by ECU (Engine Control Unit), the number of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

KNOCK Detection with Series Cylinder Pressure Sensors

Technical University of Munich-Matthias Gaderer
Vitesco Technologies GmbH-Harry Schuele, Johannes Beer
  • Technical Paper
  • 2020-01-1143
To be published on 2020-04-14 by SAE International in United States
Current legal requirements based on new driving cycles like WLTP or RDE focus on elevated power and torque from the engine. The gear ratios are chosen so as to permit low engine speeds to reduce fuel consumption and consequently CO2 emissions by shifting the operating point to higher loads with reduced throttling and friction losses at low engine speeds. To achieve the required acceleration values the engine tends to be operated more frequently close to its power and torque limits. Thus, the knock occurring at the load limits will increase in significance. Today, in series production, knock is detected via structure-borne sound sensors and eliminated via retarded ignition. New low-cost in-cylinder pressure sensors (ICPS) suitable for series-production now permit evaluation of every single combustion cycle, thus detecting knock in the engine control unit (ECU) at all speed and load ratios independent of parasitic noise. This paper presents the potential for knock detection and knock control using series-production capable cylinder pressure sensors. First, the basic differences of the algorithm of a structure-borne sensor and a cylinder…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimized Control of Dynamical Engine-Start Process in a Hybrid Electric Vehicle

Corun CHS Technology Co., Ltd.-Tong Zhang
Tongji University-Ji Gao, Diming Lou
  • Technical Paper
  • 2020-01-0268
To be published on 2020-04-14 by SAE International in United States
Engine start while driving is one of the most typical and frequent work conditions for hybrid vehicles. Engine start has very significant impact on the driving comfort. Engine start, especially a dynamical engine start, have high control requirements regarding control time, torque output and riding comfort. In some hybrid transmissions such as P2, engine is cranked and synchronized through wet clutch slipping. Because clutch pressure control has time-varying delay and estimation precision of engine torque by ECU (Engine Control Unit) is poor, conventional PID controller is unable to meet the high requirements of control quality. A new control algorithm is proposed in this paper to cope with all these challenges. The new control algorithm is based on LADRC (Linear Active Disturbance Rejection Controller) and is improved through combination with Smith predictor and Adaline network. LADRC is adopted to reduce negative effects of poor precision of engine torque. Smith predictor is introduced to compensate the time delay of clutch torque. In addition, the time-varying delay can be estimated by Adaline network and parameters of Smith predictor…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

Anhui Jianghuai Automobile Group Corp.-Wei Yan, Tan Jian, Longhua Chen
Tongji University-Jinqiu Wang, Zongjie Hu, Denghao Zhu, Weiqi Ding, Liguang Li
  • Technical Paper
  • 2020-01-1148
To be published on 2020-04-14 by SAE International in United States
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected. Moreover, among detected carbon induced pre-ignition cycles, 91.4% of them can be detected earlier than crank angle at 50% heat release (CA50), providing ample time for super-knock suppression. The results also show that additional fuel injection…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Control Oriented Physics Based Three-Way Catalytic Converter Temperature Estimation Model for Real Time Controllers

FCA US LLC-Darshan Shah, Kiran Premchand, David Pedro
  • Technical Paper
  • 2020-01-0904
To be published on 2020-04-14 by SAE International in United States
As automotive emissions become more stringent, accurate control of three-way catalyst temperature is increasingly important for maintaining high levels of conversion efficiency as well as preventing damage to the catalyst. A real-time catalyst temperature model provides critical information to the engine control system. In order to improve emissions and ensure regulatory compliance over a wide range of speed-load conditions, it is desirable to use modelled catalyst temperature as the primary input to catalyst efficiency control strategies. This requirement creates a challenge for traditional empirical models designed for component protection at high speed-load conditions. Simulation results show that a physics aligned model can estimate temperature in all operating conditions, including: cold-start, extended idle, engine shutdown, stop-start events, decel fuel shut-off, as well as traditional high load and part load points. However, physics based approaches which calculate detailed chemical reaction kinetics remain impractical for real-time controller implementation due to computational burden and calibration complexity. This paper outlines a proposal for a simplified control-oriented physics model which estimates catalyst temperature in real time. The model consists of reduced…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

FEV Europe GmbH-Stefan Tegelkamp, Martin Nijs, Johannes Scharf
RWTH Aachen University-Daniel Guse, Christian Heusch, Serge Klein, Timm Fahrbach, Jakob Andert, Stefan Pischinger
  • Technical Paper
  • 2020-01-0245
To be published on 2020-04-14 by SAE International in United States
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks. Usually, drivability calibration takes place towards the end of the vehicle development program as soon as a sufficient level of product maturity is achieved. Hence, for streamlining the entire development process, various powertrain engineering tasks need to be shifted from the overall vehicle level to component conception phases. In this context, highly dynamic and appropriated “Hardware-in-the-Loop” (HiL) component test benches are the means of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

User’s Manual for Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning

AE-2 Lightning Committee
  • Aerospace Standard
  • ARP5415B
  • Current
Published 2020-03-05 by SAE International in United States
This ARP provides detailed information, guidance, and methods in support of the Federal Aviation Administration (FAA) Advisory Circular (AC) 20-136. AC 20-136 provides a means, but not the only means, for demonstrating compliance with Title 14 of the Code of Federal Regulations (14 CFR) 23.1306 (Amendment 23-61), 23.2515 (Amendment 23-64), 25.1316, 27.1316, and 29.1316. It is also intended for this ARP to provide the same information, guidance, and methods, to the European Aviation Safety Agency (EASA) certification specifications CS 23.1306 (Amendment 23/4), 23.2515 (Amendment 23/5), 25.1316, 27.1316, and 29.1316, and associated Acceptable Means of Compliance (AMC) 20-136. This ARP provides references relevant to identifying: (1) acceptance criteria for the indirect effects of lightning compliance approaches, (2) verification (analysis and test) methods including those associated with multiple stroke and multiple burst, (3) recommended design options to optimize needed system immunity to lightning indirect effects, and (4) provide guidance in the areas of continued airworthiness of the lightning protection. Equipment hazards due to the indirect effects on equipment mounted on the aircraft exterior, equipment located within the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Electronic Engine Control Design Guide for Electromagnetic Environmental Effects

E-36 Electronic Engine Controls Committee
  • Aerospace Standard
  • AIR5060B
  • Current
Published 2020-02-26 by SAE International in United States
The purpose of this document is to provide reference material for establishing compatibility of electronic gas turbine engine control systems and associated components with the electromagnetic environment and achieving compliance with associated airworthiness requirements.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hardware Protected Security for Ground Vehicles

Vehicle Electrical System Security Committee
  • Ground Vehicle Standard
  • J3101_202002
  • Current
Published 2020-02-10 by SAE International in United States
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive. Other use cases that require hardware protected security environment-based access control may be used by each manufacturer/service provider based on vehicle capabilities, architecture, and business model. This section describes how the hardware protected security environment provides a platform…
This content contains downloadable datasets
Annotation ability available
Open Access

Study on Multivariable Control for Air and Charging System of Gasoline Engine

SAE International Journal of Passenger Cars - Electronic and Electrical Systems

BAIC Motor Corporation Powertrain Center, China-Fei Liu Shao
He Bei Agriculture University, China-Jiang Cai Zhen
  • Journal Article
  • 07-12-02-0006
Published 2020-02-07 by SAE International in United States
This study explores the multivariable multi-input–multi-output technique based on nonlinear models to decouple actuator interaction and to reduce the calibration workload, as well as to increase control performances, under transient conditions, and also explores the robustness on model uncertainties and system parameter variations. The development of a nonlinear dynamic physical model of air in gasoline engine and its charging system provides the for the control technology. The model uses feedback linearization control to decouple the interaction between actuators and compensate the nonlinearity. A new set of inputs was defined through inversing the differential equation of the system. The relationship between the new inputs and the output is linear and decoupled. In addition, a linear control module is used to ensure transient and steady-state performance as well as closed-loop robustness. The control method has been confirmed on the bench test with a three-cylinder gasoline engine prototype for hybrid electric vehicles. Transient test results show that the controller is able to coordinate the actuator to achieve the targets.