Your Selections

Energy consumption
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

new

Experimental Investigation of Electric Vehicle Performance and Energy Consumption on Chassis Dynamometer Using Drive Cycle Analysis

SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy

CSIR-Indian Institute of Petroleum, India-Gananath Doulat Thakre
Indian Institute of Petroleum CSIR, India-Robindro Lairenlakpam
  • Journal Article
  • 13-01-01-0002
Published 2019-12-02 by SAE International in United States
This article reports an experimental study carried out to investigate the vehicle performance and energy consumption (EC) of an electric vehicle (EV) on three different driving cycles using drive cycle analysis. The driving cycles are the Indian Driving Cycle (IDC), Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light vehicles Test Cycle (WLTC). A new prototype electric powertrain was developed using an indigenous three-phase induction motor (3PIM), Li-ion battery (LiB) pack, vector motor controller, and newly developed mechanical parts. In this research work, a pollution-causing gasoline car (Maruti Zen) was converted into an EV by using the new powertrain. The EV conversion vehicle was used as the test vehicle. After the removal of the Internal Combustion Engine (ICE) the new powertrain was integrated with the vehicle’s gearbox (GB) system which was configured on a single motor, fixed gear configuration having a gear ratio of 1.28:1. The EV performance tests were carried out on the chassis dynamometer that followed the driving cycles. The maximum speed test showed a top speed of 64 km/h for the EV.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

ARAI Academy-Amitabh Das, Yash Jain
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2394
Published 2019-11-21 by SAE International in United States
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design improvements in advanced automotive batteries using AI

International Centre For Automotive Tech.-Devesh Pareek Sachin
  • Technical Paper
  • 2019-28-2505
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and with this comes challenges to improve the performance of battery to optimize power consumption in electric vehicles. Objective: This paper would focus on the optimization of battery performance incoherent with vehicle power consumption behavior in terms of efficiency using decision-making ability based on given input signals
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Dedicated Lubricant for Hydrogen Fuelled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corporation Limited-Sauhard Singh, Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
Published 2019-11-21 by SAE International in United States
Hydrocarbon based fossil fuels are being used as the main energy resource, burning of which produces carbon dioxide (CO2) and other emissions harmful to environment. Moreover, CO2 is considered as the main contributor to global warming or greenhouse effect. These are the main drivers behind the ongoing research & development in the area of alternative energy sources. Among various alternatives, Hydrogen is identified as the most promising alternative fuel. Hydrogen is the cleanest fuel having some of the most attractive features such as various methods of production from renewable energy (solar, wind, biomass etc.), from fossil fuels etc. H2 as a fuel can be used in various applications such as spark ignition engine, fuel cells etc.Hydrogen has low ignition energy and ensures easy ignition of the ultra-lean mixture with air. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Performance & Efficiency Improvement of Electric Vehicle Power Train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Prospects of Bio Diesel and blends as a fuel supplement for diesel engines.

Manav Rachna International University-Gurpreet Singh Matharou
  • Technical Paper
  • 2019-28-2393
Published 2019-11-21 by SAE International in United States
Biodiesel can supplement petroleum product as a "perfect vitality source". It can ensure nature by diminishing CO2, SO2, CO, HC emission to an extent. The carbon cycle of Biodiesel is dynamic through the photosynthesis procedure .Plants ingest CO2, or, in other words those released by the biodiesel ignition process. Utilizing biodiesel can all the more adequately lessen the outflow of CO2, secure the indigenous habitat and keep up the environmental equalization, contrasted with the utilization of petroleum product. This paper considers the issues and gives understanding on the utilization of bio diesel in existing passenger vehicles which runs on diesel as a fuel. Because of increment in use of non-renewable energy sources viz., petroleum products are on an exponential decline. Today we have an option of electric vehicle or fuel cell based vehicles but what about the existing infrastructures of Billions of vehicles plying on Indian road. Bio diesel as a fuel solves this issue. Biodiesel and its blends such as B20, B40 etc can be used as a supplement of diesel.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

High Durable PU Metallic Monocoat System for Tractor Sheet Metal Application

Mahindra & Mahindra, Ltd.-Rahul Lalwani, Sudhir Sawant, Yogesh keskar, Nitin Pagar
Mahindra Research Valley-Vinay Kumar
  • Technical Paper
  • 2019-28-2541
Published 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like tractor and automobiles, most attractive coating is metallic paints. It is widely applied using 3 coat 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production through put time and lower productivity in manufacturing process. During various brainstorming and sustainability initiatives, paint application process was identified to reduce burden on environment and save energy. Various other industry benchmarking and field performance requirement studies helped to identify critical quality parameters. There was collaboration with supplier to develop monocoat system without compromising any performance and aesthetic properties. This resulted in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.Metallic mono-coat formulated using strong polyurethane resins and latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology, further reduction in baking temperature and energy is possible.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Novel Approach on Range Prediction of a Hydrogen Fuel Cell Electric Truck

VE Commercial Vehicles, Ltd.-C Venkatesh Chandrasekar, L R Amruth Kumar
  • Technical Paper
  • 2019-28-2514
Published 2019-11-21 by SAE International in United States
Today’s growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors is very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. In further the hydrogen fuel cell-based electric vehicles are the future of the commercial electric vehicle to achieve long-range, zero-emission and alternate for reducing fossil fuels requirement.The hydrogen fuel cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders. And here the prediction of the vehicle range is essential based on optimal parameters; vehicle acceleration, speed, trip time etc. before the start of the trip.If the driver starts the vehicle without range prediction and optimum driving strategy, will be led into midway vehicle stoppage and excessive energy consumption of the trip.This paper deals with different methods of electric vehicle range prediction and optimization, benefits and demerits are listed and discussed, to…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design Analysis of a Retrofit System for an Electric Two Wheeler

Manav Rachna International Institute of Research & Studies-Devendra Vashist
  • Technical Paper
  • 2019-28-2482
Published 2019-11-21 by SAE International in United States
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70% of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine. The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes. The paper will help in deign calculation and selection of motor for new designs developed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Real World Energy Efficiency Calculation for e-Rickshaws - A Comparative Study (Lead Acid Vs Lithium Ion Battery Vehicles)

Ola Electric Mobility Pvt Ltd.-Nishit Jain, Smit Gupta
  • Technical Paper
  • 2019-28-2486
Published 2019-11-21 by SAE International in United States
E-Rickshaws are receiving considerable attention as a sustainable passenger transportation in Indian mobility space. As per the recent reports, more than 1.5 million e-rickshaws are currently operating in the country. These are quieter, cleaner and convenient mode for last mile connectivity and are typically used for short distance (<10 Km) commutation. For owners, these vehicles offer value in terms of affordability and operating cost. Challenge for manufacturers is to design a vehicle which balances the requirements of both passengers and owners. Energy efficiency (Energy consumption per Km) influences such critical decisions. There is always a difference between the catalog value and actual on-road Energy efficiency figures and therefore it's important to really understand owner requirements w.r.t. market where vehicle is going to be operated. In this study, we collected data for different types of E-rickshaws in real world scenarios in city operations and determined the energy efficiency of these vehicles. Also, we attempted to compare energy efficiency figures with different battery chemistry (Lead acid and Lithium Ion vehicles). The data can provide deep insights from…
This content contains downloadable datasets
Annotation ability available