Your Selections

Energy conservation
Show Only


File Formats

Content Types












Development of Dedicated Lubricant for Hydrogen Fueled Spark Ignition Engine

Indian Institute of Technology - Delhi-K A Subramanian
Indian Oil Corp Ltd-Verinder Kumar Bathla, Reji Mathai
  • Technical Paper
  • 2019-28-2511
To be published on 2019-11-21 by SAE International in United States
Hydrogen has low ignition energy ensures easy ignition of the ultra-lean mixture of H2+air also. The flame speed of hydrogen is about five times higher than methane and gasoline which allows hydrogen fuelled IC engines to have relatively reduced cyclic variations than that of with methane and gasoline. High flame speed also helps to make the combustion closer to constant volume which enhances the thermal efficiency of hydrogen fuelled IC engine. High octane number of hydrogen makes it suitable for its application in Spark ignition (SI) engines. Since the hydrogen combustion in spark ignition engine generates water which can interfere with the lubricant performance, different lubricant is to be developed for this purpose. In this background, the present work is aimed at the development of dedicated lubricant for hydrogen fuelled SI engine. This paper presents the various parameters required for evaluating different lubricants for hydrogen fuelled genset. Existing CNG genset has been converted into hydrogen genset with modification in intake manifold assembly, engine hardware system, ECU modification with adequate modification in exhaust system. State of…

Powertrain Modelling of a Fuel Cell Three-Wheeler for the Indian Roads

PES University-Abhishek Puthige, Sharanabasappa Patil
  • Technical Paper
  • 2019-28-2513
To be published on 2019-11-21 by SAE International in United States
The three wheeled vehicles are extremely popular in the Indian subcontinent and are constantly posting a positive growth in sales. Given this trend and their polluting nature they can be noted as sizeable contributors to the air quality issues plaguing the metropolitan cities. With the nation aiming at eradicating the use of internal combustion engines (ICE) in passenger transportation by the year 2030, there have been attempts to convert ICE three-wheelers to battery electric three-wheeler. However, the battery electric three-wheelers, which are quite commonly used for end-mile connectivity, serve to highlight the demerits of the technology pertaining to their range, charge cycle, power to weight ratio, and efficiency. Hydrogen based are fuel cells gaining traction as a potential alternative to batteries due to their efficient and clean power generation. The present paper aims to develop and recommend an optimized power management strategy along with a driveline model for addressing the intra-city connectivity in a typical Indian city. The simulation models considering a parallel hybrid electric three-wheeler with a Proton Exchange Membrane fuel cell as the…

Design and Development of Industrial Automotive Battery Management system

Dipali Dange, Radhika Ballal L
Assistant professor, COE, Pune-Meera Murali
  • Technical Paper
  • 2019-28-2498
To be published on 2019-11-21 by SAE International in United States
Battery operated vehicle need accurate management system because of its quick changes in State of charge (SOC) due to aggressive acceleration profiles and regenerative braking. Li-ion battery needs control over its operating area for its safe working. So, the main objective of the proposed system is to develop a BMS having algorithms to estimate accurate SOC, predict degradation parameters, balance individual cells, manage cell temperature, and provide safe area of operation defined by voltage and temperature. Proposed methodology uses Model-based Design approach wherein nonlinear behavior of battery is modeled as Equivalent Circuit Model to compute the SOC and degradation effect on battery to decide the end of life of battery, also performing inductive Active balancing on cells to equalize the charge. proposed algorithms communicate with the vehicle ECU through CAN to assist the driver for runtime estimation, time for battery swapping, Alerts. Li-ion cells undergo current tests like pulsed charge-discharge, and transient response is effectively captured with parameter estimation with various degraded cells. Estimated model used in system and build battery stack. Balancing algorithm designed…

Equivalent Radiated Power driven optimization for driveline housings using simulation tools to cut-down the project time

VE Commercial Vehicles Ltd-Suresh Kumar Kandreegula, Hemant Nishad, Dheeraj Singh, Kunal Kamal
  • Technical Paper
  • 2019-28-2533
To be published on 2019-11-21 by SAE International in United States
In the field of Automotive industry, being competitive makes you succeed. Industry is moving towards advancement day by day. New technologies to improve fuel efficiency, crash resistance, vehicle noise levels have been trending. At VECV, we have traditionally worked on CAE of driveline housings (clutch housing & transmission housing) based on static, dynamic and transient loadings. Currently, weight optimization technique depends on the structural and dynamic loading conditions, but do not consider acoustic concerns. Powertrain housings are highly prone to vibrations and leads to high level of noise. Noise has been constant issue in the casting components associated to driveline. There have been lot of research going on to reduce the level of noise and vibrations in the vehicle driveline, which ultimately leads to fuel efficiency and ergonomic benefits. Low noise generation can also lead to saving of lot of resources deployed to dampen the noises. In order to capture the acoustic responses of the system and to improve the design based on acoustic responses, a comprehensive analysis of newly developed driveline housings (clutch housing…

Improved Performance of Electric Vehicles with Supercapacitor

Spel Technologies Private Limited-Rajendrakumar Laxminarayan Sharma
  • Technical Paper
  • 2019-28-2468
To be published on 2019-11-21 by SAE International in United States
Background: Due to Environmental concern worldwide, Mobility is under pressure to shift gear from fossil fuel to Electric. This is Rebirth of Electric Mobility is with state’s initiative, but it is facing bigger challenges than the 1900s era. Fossil fuel vehicles have already carved the benchmark on ease of range per charge, and time of charge (filling of fossil fuel), which needs to be at least matched by Electric Vehicles. The success of electric vehicles will not only be driven by state policy but also by performance and Economic Viability. While at this introduction level state is trying best to offset cost by way of subsidy/tax-sops offering. So, in clear terms “Performance of Electric Vehicles” need to be addressed and enhanced to put them in main stream in place of fossil fuel vehicles. In last 100 years there has been significant technological development in Motors, and Energy Storage, which is base of Electric mobility. Motors have fared well on technological development front, but energy storage has been struggling to keep pace with this Power hungry…

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

Tata Technologies Ltd-Aashish Bhargava, Gaurav Soni
Tata Technologies, Ltd.-Sujit Gavade
  • Technical Paper
  • 2019-28-2431
To be published on 2019-11-21 by SAE International in United States
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected. Further Engine testing carried out with selected Compression ratios and parameters such as Fuel efficiency, In cylinder pressure, Brake thermal efficiency and Ignition delay were compared.

EV Charging Concept for the Indian Market

Robert Bosch Engg & Buss Soln Ltd.-Tarang Garg, Viswanatha Lingala, Prabhakar G
  • Technical Paper
  • 2019-28-2502
To be published on 2019-11-21 by SAE International in United States
Predominantly the biggest question that haunts the EV Market is the charging infrastructure that should eventually ease the nervousness of the consumers and allowing EV to penetrate the Indian market with changes done within urban areas and highways. There are multitude of options available ranging from onboard charging via home charging point to a Fast DC off board charger that can be used to charge an EV. There are multiple factors that can be used to evaluate the options and their pros / cons. Some of these factors are: • Cost, time to charge, health of battery, charging and discharge rate of the battery, etc… • Convenience and availability of charging point • Ease of operation including payment • Safety and Security • Ambient temperature in which charging is done There are mainly these categories of charging options: • Residential charging based on a home charging point. The charger is mounted on the vehicle (onboard) and the EV cable can be connected to the home plug point. This method of charging could result in heating…

High Durable PU Metallic Monocoat system for tractor sheet metal application.

Mahindra & Mahindra Kandivali-SUDHIR SAWANT
Mahindra & Mahindra Ltd-Yogesh keskar, Nitin pagar
  • Technical Paper
  • 2019-28-2541
To be published on 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving. Metallic mono-coat formulated using strong polyurethane resins & latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology further, reduction of baking temperature is possible & reduce further energy consumption. The proposed technology is fully validated on component and ready. Proposed…

Potential for Emission Reduction and Fuel Economy with Micro & Mild HEV

AVL LIST GmbH-Franz Murr, Ernst Winklhofer
  • Technical Paper
  • 2019-28-2504
To be published on 2019-11-21 by SAE International in United States
The development of modern combustion engines (spark ignition as well as compression ignition) for vehicles compliant with future oriented emission legislation (BS6, Euro VI, China 6) has introduced several technologies for improvement of both fuel efficiency as well as low emissions combustion strategies. Some of these technologies as there are high pressure multiple injection systems or sophisticated exhaust gas aftertreatment system imply substantial increase in test and calibration time as well as equipment cost. With the introduction of 48V systems for hybridization a cost-efficient enhancement and, partially, an even attractive alternative is now available. An overview will be given on current technologies as well as on implemented or simulated vehicle concepts for light duty gasoline and diesel powertrains. The focus will be on solutions which have potential for the Indian market, i.e. solutions which can be implemented with moderate application effort for currently available compact and medium size cars. The possibilities of 12/24 & 48V technologies for fuel economy and emission reduction will be discussed. Simultaneously, tools for testing and calibration at power train testbed…

Rapid Prototyping and Implementation of traction motor drive for E- Mobility

Altair Engineering India Pvt Ltd-Sreeram Mohan
Altair Engineering India Pvt , Ltd.-Srikanth R
  • Technical Paper
  • 2019-28-2472
To be published on 2019-11-21 by SAE International in United States
Objective / Question: Is it possible to extend the envelope of simulation driven design and its advantages to development of complex dynamic systems viz. traction motor drives? The objective that then follows is how to enable OEM/Tier-1s to reduce wastes in the process of traction motor controller design, development, optimization and implementation. Motor control design to validation process is time consuming and tricky! Additionally, the requirement of software knowledge to write code to implement drive engineer's control ideas. The challenges here are - to name a few - algorithm for real time, addressing memory constraints, debugging, comprehending mathematical overflows, portability & BOM cost. These introduces wastes in parameters like time, cost, performance, efficiency and reliability. Methodology: Developing a new traction motor controller for E Mobility takes 18 - 24 months typically. 2 distinct activities take place in a loop. One is the motor drive engineer who has good understanding of the motor, requirement demands on the motor & digital control of the motor and the second is the software engineer who has a good understanding…