Your Selections

Electric vehicles
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Validation Testing of Lithium Battery Performance-Based Packaging for use in Air Transportation (SAE G-27)

National Research Council Canada-Khalid Fatih, Manuel Hernandez
Transport Canada-Ian Whittal, Kiran Shoib
  • Technical Paper
  • 2020-01-0042
To be published on 2020-03-10 by SAE International in United States
The SAE G-27 committee was tasked by ICAO to develop a performance-based packaging standard for lithium batteries transported as cargo on aircraft. The standard details test criteria to qualify packages of lithium batteries & cells for transportation as cargo on-board passenger aircraft. Lithium batteries and cells have been prohibited from shipment as cargo on passenger aircraft since 2016. This paper summarizes the results of the tests conducted by Transport Canada and National Research Council Canada to support the development of this standard with evidence-based recommendations. It includes a description of the test specimens, the test set up, instrumentation used, and test procedures following the standard as drafted to date. The study considered several lithium-ion battery and cell chemistries that were tested under various proposed testing scenarios in the draft standard. The aim was to assess the feasibility of proposed tests, and to determine whether the tests are able to accurately capture hazards which may arise from a catastrophic battery or a cell failure within the package. Laboratory results were also simulated with Computational Fluid Dynamics…
new

Two-Speed Transmission Gear Shift Process Analysis and Optimization Using Genetic Algorithm

SAE International Journal of Alternative Powertrains

China-Zhan Cao
China Automotive Technology and Research Center Co., Ltd., China-Jiansen Yang, Xinyu Wang
  • Journal Article
  • 08-09-01-0001
Published 2020-01-16 by SAE International in United States
Electric Vehicle (EV) equipped with two-speed transmission has benefit in improving dynamic performance and saving battery consumption. However, during gear shift process, torque interruption and shift impact may lead to a bad shift quality. This work investigates gear shift process in an Automated Manual Transmission (AMT) configuration-based two-speed transmission. First of all, a typical gear shift process is analyzed. Parameters like motor speed, shift force, motor torque change rate, and speed difference between synchronizer and target engage gear are all included to find the relationships with shift duration. Then vehicle jerk is introduced as a criterion to evaluate shift impact. Besides, a comprehensive shift control strategy is developed. While keeping the output torque at wheels unchanged, the shift strategy also improved motor working efficiency after gear shift. Therefore, to determine an optimum shift strategy and achieve a balance among different parameters, Genetic Algorithm (GA) multi-objective optimization method is implemented. Through GA optimization, several solutions are presented and discussed. The final results can well satisfy the requirements of different objectives. This work provides a novel and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Brake System Thermal Performance for Brazil Market Battery Electric Vehicles

General Motors, LLC-David Antanaitis
  • Technical Paper
  • 2019-36-0019
Published 2020-01-13 by SAE International in United States
The discussion in the braking industry that has been ongoing for over a decade now on how to specify brake systems for regenerative-brake intensive vehicle applications has intensified considerably in the past few years as the automotive industry ponders a future where electric vehicles become predominant. Major automotive manufactures have announced plans to create dedicated electric-only vehicle architectures, from which to offer a full range of electric vehicle configurations. The time to really figure out the translation of Voice of the Electric Vehicle Customer to technical requirements and brake system content is approaching very rapidly. One of the major design decisions in the brake system is the sizing of foundation brake components for thermal performance. There is no question that regenerative brakes can significantly reduce the demand on the friction brakes in normal usage, sometimes by a full order of magnitude or more. Brakes no longer need to be sized for everyday use, rather, the sizing is driven by “limit cases” such as failure of the regen system, a full state of charge in the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

ALL-WHEEL DRIVE ELECTRIC VEHICLE MODELING AND PERFORMANCE OPTIMIZATION

Department of Mechanical and Aerospace Engineering, Politecn-H. de Carvalho Pinheiro, E. Galanzino, A. Messana, L. Sisca, A. Ferraris, A. G. Airale, M. Carello
  • Technical Paper
  • 2019-36-0197
Published 2020-01-13 by SAE International in United States
Electrification of the powertrain is one of the most promising trends in the automotive industry. Among the novel architectures, this paper aims to study the latent advantages provided by in-wheel motors, particularly an All-Wheel-Drive powertrain composed by four electric machines directly connected to each wheel-hub of a high performance vehicle. Beyond the well-known packaging advantage allowed by the in-wheel motor, the presence of four independent torque sources allows more flexible and complex control strategies of torque allocation. The study explores three different control modules working simultaneously: torque vectoring, regenerative braking and energy efficiency optimization protocol. The main objectives of the project are: improving handling, measured through the lap time of the virtual driver in a simulated track, and enhance energy efficiency, assessed by the battery state of charge variation during standard events. The torque vectoring strategy is based on a feedback PID controller working in parallel to a feedforward logic that predict the desired behavior based on the driver demands (such as steering angle) and vehicle states (chassis accelerations and velocities). The regenerative braking manages…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Pulsating Heat Pipe Automotive Application

Magneti Marelli Sistemas Automotivos, Universidade Estadual-Rafael Beicker Barbosa de Oliveira, Sergio Gradella Villalva, Luiz Paulo Rodrigues Filho, Fernando Luiz Windlin, Guilherme Henrique Mayer Alegre, Rogério Gonçalves do Santos
  • Technical Paper
  • 2019-36-0227
Published 2020-01-13 by SAE International in United States
It is proposed a study to evaluate PHP (pulsating heat pipes) device application in battery thermal management systems for HEV (hybrid-electric vehicle) and EV (electric vehicle). Firstly, it is necessary to understanding Li-ion (lithium ion) batteries for HEV/EV, the electrical energy supply state-of-the-art. The analyzed aspects were battery framework and configuration; working principles and mechanisms; and market penetration and potential. Secondly, the adverse effects of temperature over such batteries were discussed. After understanding the case study, a battery modeling survey was performed in order to later evaluate BTMSs (battery thermal management systems). Well comprehended case study and battery modeling, then, it was possible to examine current automotive battery cooling and heating solutions. Finally, PHP was evaluated as a possible BTMS regarding technical and commercial aspects, explaining what would be the requisites in order to attend automobile heat dissipation demands and the challenges for embedding it.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

B-GAS: Conversion system to Internal Combustion Engine (Diesel) for using alternative energetic source for application in Agricultural Machinery

Giovana Queiroz da Silva, Cléber Willian Gomes, Guilherme Bugatti dos Santos, Paulo Eduardo Wey Nunes da Costa, Pedro Augusto Talib Soares, Renato Zerbinatti Raduan, Vinícius Trento Gomes
  • Technical Paper
  • 2019-36-0235
Published 2020-01-13 by SAE International in United States
Fuel has a huge port in the operating costs of agribusiness, the increase on the price and the shortage of this energy resource has a direct impact on agricultural production costs. In this context, regions that are farther from refineries and lack the presence of fuel distribution centers tend to suffer more from the availability and cost of this resource. Economically speaking, agribusiness has a prominent position in the national scenery. The world fuel source had an evolution from the predominance of solid fuels to the current age of liquid fuels derived from petroleum and seeing the future and growing age of gas fuels as the predecessor stage of electric vehicles in some markets. Thereby, agricultural organic waste has the potential to generate an alternative energy, clean and ecological matrix, also reducing the emission of polluting gases, soil, groundwater, rivers and weir are still prevented, and the release of greenhouse gases in the atmosphere, such as methane and carbon dioxide. In Brazil, animal waste is normally used for the generation of biofuel, and only 14%…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of the economic, technological and environmental feasibility of hybridization and electrification of the national fleet of light vehicles

Cento Federal de Educação Tecnológica – CEFET MG-Fernando Antonio Rodrigues Filho, Letícia Morato Torres
Instituto Federal de Minas Gerais – IFMG-Thiago Augusto Araújo Moreira
  • Technical Paper
  • 2019-36-0283
Published 2020-01-13 by SAE International in United States
Vehicles powered by internal combustion engines correspond to 99.7% of the global fleet. Unfortunately, most of them runs with fossil fuels and contribute with over than 70% of CO and 20% of CO2 emitted to atmosphere. Global climate change has become a major issue and stringent legislation has been forcing the scientific community to seek a feasible solution for this issue. Renewable fuels, hybrid and electric vehicles have been pointed out as the answer for harmful greenhouse gases emissions. This paper demystifies the wrong belief that ICE will be totally replaced by electric vehicles in short and medium time. The zero emission vehicle (ZEV) terminology applied to EV must abolished since it is not true, as 65% of global electricity is generated from non-renewable sources. Despite of being more efficient, hybrid vehicles are still economically unfeasible. The low global fleet percentage of hybrid and electric vehicles associated with the current growth rate prove mathematically that their market share will not change significantly in short time. Those facts associated with the CO2-free status of renewable fuels…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

System Level Vehicle Model Development of Light Heavy Duty Battery Electric Vehicle in GT-Suite

Isuzu Technical Center of America Inc. (Plymouth, Michigan,-Santhosh Pasupathi, Aishwarya Shetty, Smruti Rathod, Gerald Bergsieker
  • Technical Paper
  • 2019-01-2369
Published 2019-12-19 by SAE International in United States
Model based development is an approach pursued to obtain an advanced insight into powertrain & vehicle development. This approach enables the ability to trace errors early on, thereby reducing the dependence on field testing and saving cost & time involved in the development process. The purpose of this study is to develop a system level battery electric vehicle model using GT-Suite as modeling platform, for Light Heavy Duty applications. The outcome of this study is electric range estimation, performance analysis, component sizing and optimization for inverter-motor and battery components. The model has been developed using a map-based approach. Hence, the simulation time is faster than real-time, requires less input data and can be used for preliminary range & performance estimation. The model fidelity has been validated against performance, acceleration, deceleration and coast-down data obtained from field testing. Apart from field data, standard EPA drive cycles and customer usage based drive cycles have been used as target to the model. Energy efficiency (Wh/mile) and MPGe calculations have been performed as part of model validation. The applications…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Innovative Fluid Allowing a New and Efficient Battery Thermal Management

TOTAL Marketing Services-Jonathan RAISIN, Nicolas CHAMPAGNE
  • Technical Paper
  • 2019-01-2259
Published 2019-12-19 by SAE International in United States
With the increasing availability of fast charging stations across the globe, tighter and tighter constraints are placed on electric vehicles batteries. In order to handle the thermal stresses induced during fast charging, the improvement of the existing battery thermal management systems has become key. This article presents an innovative thermal management system for batteries. The system consists of circulating a newly developed highly advanced dielectric fluid in direct contact with the electrochemical cells of the battery pack. Experiments on our dedicated bench test and numerical simulations are reported here demonstrating the performance of this system with fluids, i.e. its ability to efficiently regulate the temperature of the battery cells even under fast charging conditions and low flow rates. Consequently, this thermal management strategy could be implemented within the next generation of battery electric vehicle (BEV) using conventional pumping systems and lead to an improved battery lifetime and therefore a lower total cost of BEV ownership.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Lubricants Technology Applied to Transmissions in Hybrid Electric Vehicles and Electric Vehicles

Lubricants Research Laboratory, Idemitsu Kosan Co., LTd.Ichi-Keiichi Narita, Daisuke Takekawa
  • Technical Paper
  • 2019-01-2338
Published 2019-12-19 by SAE International in United States
The aim of this study is to investigate how lubricants used for transaxles in hybrid electric vehicles (HEVs) and electric vehicles (EVs) give an impact on the cooling performance for electric motors. As a result, reducing lubricant viscosity improve heat transfer in both natural and forced convection conditions. Quantitative analysis could reveal that kinetic viscosity and heat conductivity of fluids are highly influential on the cooling performance. In addition, we investigated the effect of lubricant additive on fatigue life in bearing components by using a thrust needle roller bearing tester. Extreme pressure agent could control a morphology of the bearing raceway surface, playing a role in extending a fatigue life of the bearing.
This content contains downloadable datasets
Annotation ability available