Your Selections

Show Only


File Formats

Content Types











Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

NoPo Nanotechnologies India Pvt Ltd-Aparna Allannavar
NoPo Nanotechnologies India Pvt, Ltd.-Gadhadar Changalaraya Reddy
  • Technical Paper
  • 2019-28-2532
To be published on 2019-11-21 by SAE International in United States
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance. Here we report results of our work with NoPo HiPCO® Nanotubes with small amounts of Iron. 6K Carbon fiber was used as the fiber reinforcement. NoPo HiPCO® Nanotubes were reinforced in the Epoxy system by sonication. HiPCO® Nanotubes were produced using standard parameters. The coupons of CENCE composite were made using VARTM…

Impact of wheel-housing on aerodynamic drag and effect on energy consumption on an electric bus body

Automotive Research Association of India-Amitabh Das, Yash Jain, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2394
To be published on 2019-11-21 by SAE International in United States
Role of Wheel and underbody Aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an Electric Bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption. Keywords: Wheel-housing, Drag Coefficient, ANSYS Fluent, Bus, Energy consumption

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

Snehil Mendiratta, Sugat Sharma
ARAI-Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
To be published on 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. Since it is completely closed, it is an adding factor to the drag coefficient of the vehicle. This space can be utilized to capture the wind energy to reduce the drag coefficient and generate electricity. Based on this, the objective of the work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. An active front grill shutters will be used to optimize the aerodynamic drag at different vehicle speeds. Initially the aerodynamic analysis of a basic electric car model is performed and then it is validated with the scaled model by using wind tunnel testing. The modified model with a wind turbine and an active grill shutters is analyzed, considering different parameters such as number of turbine blades, height of wind turbine, angle of attack, vehicle speed (60-120 kmph). Based on the simulation carried out in ANSYS Fluent, our scaled down optimized model is…

Analysis Of GaN Based BLDC Motor Drive For Automotive Application

Sudhanshu Telrandhe-Sudhanshu harish Telrandhe
  • Technical Paper
  • 2019-28-2471
To be published on 2019-11-21 by SAE International in United States
Objective Automotive sector is rapidly moving towards electric vehicle. BLDC motor is gaining popularity in the field of electric vehicle due to its high torque to weight ratio and simple control. In this paper we will focus on Switching loss characterization of 3 kW GaN based BLDC drive for electric vehicle. To improve efficiency of drive gallium-nitride based power transistor is used instead of Si MOSFET. GaN devices enable the design of inverter at higher frequencies with improved power density and efficiency as compared to traditional Si MOSFETs. Methodology In this paper commercially available GaN devices compared with Si MOSFETs. The power devices, which are selected for the performance comparison, are EPC2022 GaN by EPC, GS61008P GaN by Gan System and SiDR668DP Si MOSFET by Vishay. The Switching losses analytically predicted in MATHCAD tool and then compared with SPICE simulation losses. Double pulse test circuit is used to find out power losses of power transistors. This double pulse test carried out for two different GaN devices from two manufacturers and one traditional Si mosfet device…

Aerodynamic analysis of commercial vehicle using active vortex generators concept

ARAI-Kamalkishore Vora
ARAI ACADEMY, PUNE-Saurabh Jayant kulkarni
  • Technical Paper
  • 2019-28-2409
To be published on 2019-11-21 by SAE International in United States
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent. The simulation result shows the significant drag coefficient reduction of the commercial vehicle with…

Affect of Tyre inflation on Rolling Resistance of Tyre

International Centre For Automotive Tech-Amit Kumar Karwal, Dushyant wazir, Mukund Mishra
International Centre For Automotive Tech.-Siddharth Tripathi
  • Technical Paper
  • 2019-28-2415
To be published on 2019-11-21 by SAE International in United States
Rolling resistance refers to the various forms of resistance against driving force when the vehicle is in motion. Several factors contribute to rolling resistance, including wind drag on the car, acceleration resistance generated by inertia force when speeding up, and resistance on the tyres. Tyre inflation pressure plays vital role on Coefficient of Rolling Resistance (RRC) of Tyre consequently vehicle mileage. Low or High tyre pressure is not good for driving comfort, safety of vehicle well as for environment. Petroleum Conservation Research Association ( PCRA ) has taken good initiative in direction to Tyre Star marking based on RRC values of Tyre.


Mahindra & Mahindra Ltd-Karthik Govindaraj, K V Balaji, Murukesan Vimalathithan, Gandhi Samir, Ladhe Rajesh
  • Technical Paper
  • 2019-28-2562
To be published on 2019-11-21 by SAE International in United States
In this paper, mold in color diamond white ASA material has been explored for front bumper grill, fender arch extension and hinge cover applications. Other than aesthetic requirements, these parts have precise fitment requirement under sun load condition in real world usage profile. Structural durability of the design was validated by virtual engineering. Part design and material combinations with better tooling design iterations were analysed by using mold flow analysis. Complete product performances were validated for predefined key test metrics such as structural durability, thermal aging, cold impact, scratch resistance, and weathering criteria. This part met required specification. This mold in color ASA material-based parts has various benefits such as environmentally friendly manufacturing by eliminating environmental issues of coating, easily recycled, and faster part production because intended color achieved in one step during molding. Also, it lowers overall production energy footprint, less scrap with no secondary painting, and lower final part cost by eliminating secondary operations.

High Durable PU Metallic Monocoat system for tractor sheet metal application.

Mahindra & Mahindra Kandivali-SUDHIR SAWANT
Mahindra & Mahindra Ltd-Yogesh keskar, Nitin pagar
  • Technical Paper
  • 2019-28-2541
To be published on 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving. Metallic mono-coat formulated using strong polyurethane resins & latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology further, reduction of baking temperature is possible & reduce further energy consumption. The proposed technology is fully validated on component and ready. Proposed…

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutters and Active Air Dams

ARAI-Kamalkishore Vora
ARAI Academy-Raghav Tandon
  • Technical Paper
  • 2019-28-2408
To be published on 2019-11-21 by SAE International in United States
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The improved model obtained is then subjected to variations in yaw angle ranging from -18° to +18°. The optimized model is then validated for a scaled down prototype in a wind tunnel. Vehicle has been modelled using SolidWorks© Tool and the simulation has been carried out using ANSYS© Fluent Tool. The result…

Design analysis of a retrofit system for an electric two wheeler

Manav Rachna International Institute of-Devendra Vashist
  • Technical Paper
  • 2019-28-2482
To be published on 2019-11-21 by SAE International in United States
Two wheelers are the major mode of single transport in the metros of India. They contribute about 70 % of the auto market unit wise. Also it is proved from the research that for per unit energy consumption they contribute more to the environment emission. Conventional IC engine based energy supply unit can be replaced with an electric DC motor with chargeable battery as the energy source for the two wheelers present in the market. In the current research, engine is replaced with the motor, batteries and controller. The above system is placed on the space emptied by the conventional engine, The design developed is tested on different gradients for identifying the motor torque for minimum and maximum resistances available on the road. The paper provides an insight on the of the torque requirements based on variable resistances required for two wheelers. Also the system will be used as a retrofit for the existing IC engine bikes to be converted in electric bikes. The paper will help in deign calculation and selection of motor for…