Your Selections

Coolants
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Function of Taguchi Grey Relation Analysis for Influencing the Process Parameter for Getting Better Product Quality and Minimize the Industrial Pollution by Coolants in Turning of Ti-6Al-4V Alloy

SRM Institute Of Science And Technology-Sundar Singh Sivam Sundarlingam Paramasivam, Durai Kumaran, Krishnaswamy Saravanan, Raj Rajendran, Harish Sriram
Tishk International University-Ganesh Babu Loganathan
Published 2019-10-11 by SAE International in United States
Cutting liquids are important for cutting titanium. In spite of the fact that ventures are discovering routes that to cut titanium dry, the properties of this material reason imperative deterrents for doing this. It is sticky, has low Thermal conductivity, and highlights a low flash point. Thus, the chips don't divert the warmth, and the work will get sufficiently hot to touch off and consume. Cutting Fluids thwart the issue by greasing up the sting, flushing the chips away and cooling the work piece. To guarantee that the cutting liquid plays out these capacities well, titanium combinations lean toward cutting liquids conveyed at a high weight, generally inside the scope of 4,000 psi. to 7,000 psi. This thinks about reports the aftereffects of a Turning test led on the Ti- 6Al- 4V compound of the symmetrical exhibit with Grey relational analysis by Taguchi Method. Spotlights on the improvement of Turning process parameters utilizing the system to get least surface Roughness (Ra), Maximum MRR, Min Tool Wear and Thrust Force with Minimum Industrial pollutants like coolant.…
This content contains downloadable datasets
Annotation ability available
new

A Contribution to Improving the Thermal Management of Powertrain Systems

Universita degli Studi della Calabria, Italy-Teresa Castiglione
Università della Calabria, Italy-Diego Perrone, Angelo Algieri, Sergio Bova
  • Journal Article
  • 03-13-01-0003
Published 2019-10-08 by SAE International in United States
This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock Mitigation by Means of Coolant Control

Università della Calabria-Diego Perrone, Luigi Falbo, Teresa Castiglione, Sergio Bova
Published 2019-09-09 by SAE International in United States
The possibility to mitigate the knock onset by means of a controlled coolant flow rate is investigated. The study is carried out on a small displacement, N.A. 4-valve per cylinder SI engine. The substitution of the standard belt-driven pump with an electrically driven one allows the variation of the coolant flow rate regardless of engine speed and permits, therefore, the adoption of a controlled coolant flow rate. The first set of experimental tests aims at evaluating the engine operating condition and the coolant flow rate, which are more favorable to the knock onset. Starting from this condition, subsequent experimental tests are carried out for transient engine operating conditions, by varying the coolant flow rates and evaluating, therefore, its effects on cylinder pressure fluctuations. In all the experiments, the spark advance and the equivalence ratio are controlled by the ECU according to the production engine map. The results show that the effects of coolant flow rate on in-cylinder pressure fluctuations are not negligible and the implementation of a predictive controller for the management of the coolant…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Validity of a Steady-State Friction Model for Determining CO2 Emissions in Transient Driving Cycles

IVK, University of Stuttgart-Michael Bargende
MAHLE International GmbH-Tobias Funk, Holger Ehnis, Reiner Kuenzel
  • Technical Paper
  • 2019-24-0054
Published 2019-09-09 by SAE International in United States
Due to its high benefit-cost ratio, decreasing mechanical friction losses in internal combustion engines represents one of the most effective and widely applicable solutions for improved engine efficiency. Especially the piston group - consisting of piston, rings and pin - shows significant potential for friction reduction, which can be evaluated through extensive experimental parameter studies. For each investigated variant, the steady-state friction measurements are fitted to an empirical polynomial model. In order to calculate the associated fuel consumption and CO2 emissions in transient driving cycles, the steady-state friction model is used in a map-based vehicle simulation. If transient engine operation entails friction phenomena that are not included in the steady-state model, the simulation could yield erroneous fuel consumption and CO2 predictions. This issue is gaining in importance with the current regulatory driving cycles, which aim to better reflect real-world driving conditions and thus contain more frequent and steep transient events. Therefore, the purpose of this study is to assess the extent to which it is valid to use a steady-state friction model for the determination…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Efficient Test Bench Operation with Early Damage Detection Systems

BEA Testing GmbH-Matthias Pouch, Carsten Küpper
RWTH Aachen University-Thomas Laible, Stefan Pischinger
Published 2019-09-09 by SAE International in United States
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.In this paper, the expectations on an EDDS and its general structure are presented and discussed. The advantages and disadvantages in test bench operation are analyzed and compared…
Annotation ability available

Microscale Electro-Hydrodynamic (EHD) Modular Cartridge Pump

  • Magazine Article
  • TBMG-34929
Published 2019-08-01 by Tech Briefs Media Group in United States

The EHD pump uses electric fields to move a dielectric fluid coolant in a thermal loop to dissipate heat generated by electrical components with a low-power system. The pump has only a few key components and no moving parts, increasing the simplicity and robustness of the system. In addition, the lightweight pump consumes very little power during operation and is modular in nature. The pump design takes a modular approach to the pumping sections by means of an electrically insulating cartridge casing that houses the high-voltage and ground electrodes along with spacers that act as both an insulator and flow channel for the dielectric fluid.

Using Laser Metal Printing to Cool Computer Chips

  • Magazine Article
  • TBMG-34595
Published 2019-06-01 by Tech Briefs Media Group in United States

Traditionally, electronics are cooled using a heat sink that transfers the heat generated by the electronic system into the air or a liquid coolant. For the heat sink to work, it has to be attached to the CPU or the graphics processor via a thermal interface material such as thermal paste. It helps facilitate the transfer of heat by bridging microscopic gaps between the heat sink and the chip.

Medium-Frequency Transformer Transitions from AC to DC

  • Magazine Article
  • TBMG-34410
Published 2019-05-01 by Tech Briefs Media Group in United States

Traditionally, electronics are cooled using a heat sink that transfers the heat generated by the electronic system into the air or a liquid coolant. For the heat sink to work, it has to be attached to the CPU or the graphics processor via a thermal interface material such as thermal paste. It helps facilitate the transfer of heat by bridging microscopic gaps between the heat sink and the chip.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Glossary of Engine Cooling System Terms

Cooling Systems Standards Committee
  • Ground Vehicle Standard
  • J1004_201904
  • Current
Published 2019-04-22 by SAE International in United States
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

Maruti Suzuki India, Ltd.-Bhoopendra Singh, Parikshit Mehra, Amit Gautam
Published 2019-04-02 by SAE International in United States
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required.The present paper describes a methodology to simulate the cold start fuel economy. The simulation methodology includes the engine heat balance equation, heat conduction through cylinder walls and heat convected by air. Based on the heat transferred and heat absorbed by…
This content contains downloadable datasets
Annotation ability available