Your Selections

Connecting rods
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Functionality analysis of thermoplastic composite material to design engine components

Politecnico di Torino-Abbas Razavykia, Cristiana Delprete, Carlo Rosso, Paolo Baldissera
  • Technical Paper
  • 2020-01-0774
To be published on 2020-04-14 by SAE International in United States
Developing of innovative technologies and materials to meet the requirements of environmental legislation on vehicle emissions has paramount importance for researchers and industries. Therefore, improvement of engine efficiency and fuel saving of modern internal combustion engines (ICE) is one of the key factors, together with the weight reduction. Thermoplastic composite materials might be one of the alternative materials to be employed to produce engine components to achieve these goals as their properties can be engineered to meet application requirements. PEI-AS4 unidirectional thermoplastic composite is used to design engine connecting rod and wrist pin, applying commercial engine data and geometries. The current study is focused on some elements of the crank mechanism because the weight reduction of these elements affects not only the curb weight of the engine but the overall structure. As a matter of fact, by reducing the reciprocating mass, alternate force will be reduced and hence the size of the structural elements. Also, other elements of the engine can be designed for lightweighting but the crank mechanism elements maximize the effect, by reducing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of High Performance Combustion Chamber Alloys on Fuel Efficiency

BREDDA Engineering, Ltd.-Scott Bredda
Cosworth, Ltd.-Andrew Egger
  • Technical Paper
  • 2020-01-1338
To be published on 2020-04-14 by SAE International in United States
The reduction of carbon emissions while maintaining power and performance in internal combustion engines (ICE) is critical for reductions of global emissions of greenhouse gases. While current engines have gone some way towards achieving lower emissions, savings are limited due to the materials construction of engine components. To further improve on emissions, materials which make up the critical components (piston, ring, connecting rod, etc.) need to improve to enable re-designing of components for significant emissions savings. This paper will outline some of the potential material alterations which enable a significant emission saving while maintaining or increasing power by enabling re-designing of critical components. Results of engine testing on a commonly available IC engine will be presented showing significant reductions in emissions and power improvements over the standard baseline model by changing materials allowing re-designing of components.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Connecting Rod Durability and Big End Distortion Study

Royal Enfield-Nabeel Thekke Kolayath, Sreenivasulu T, Rod Giles
  • Technical Paper
  • 2020-01-0184
To be published on 2020-04-14 by SAE International in United States
The prediction of the connecting rod behaviour is one of the most important aspects of the engine design to estimate the engine life and its NVH behaviour. Connecting rod is usually simulated as a stand-alone component replacing the connected members with boundary conditions. These kinds of simulation usually underestimate the life of the connecting rod and overestimate the crankpin distortion. This unreal behaviour of simulation can result in over design of the crankshaft and wrong crankpin bearing selection, which can result in a noisy engine. The current Finite Element Analysis (FEA) is modelled by considering crankshaft, bearings and crankcase substructure along with the connecting rod to predict the fatigue life and bearing distortion. A multibody dynamics (MBD) simulation of the Cranktrain has been carried out to predict the forces and accelerations on the connecting rod by including the combustion force with a constant crankshaft speed for different conditions. Journal bearing crushing and bolt preload are the initial steps to the simulation. The extracted loads from MBD simulation at different conditions are imported into the FEA…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A study of Measurement for Oil Film at the Bearing of the Small End of Diesel Engine Connecting Rod

SAE International Journal of Advances and Current Practices in Mobility

Tokyo City University-Shotaro Suzuki, Shota Yamada, Akemi Ito
  • Journal Article
  • 2019-01-2332
Published 2019-12-19 by SAE International in United States
Downsizing and slowing down of engine speed reduce mechanical losses and improve fuel economy. However, they exacerbate lubrication condition. The oil film thickness of the bearing of the small end of the connecting rod, which was one of the sliding surfaces with the severest lubrication condition in a diesel engine, was measured in this study to clarify the lubrication condition. Optical fibers were embedded in the bearing, and oil film was measured by means of the laser induced fluorescence method. It was found that oil film thickness was affected combustion gas pressure and distortion of the piston pin.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Dynamic oil pressure in connecting rod bearings and their influence on innovative cranktrain technologies

Institute for Combustion Engines VKA, RWTH Aachen University-Denis Pendovski, Stefan Pischinger
  • Technical Paper
  • 2019-01-2333
Published 2019-12-19 by SAE International in United States
In order to lower friction losses and hence ensure low fuel consumption of internal combustion engines, borderline design of hydrodynamic cranktrain bearings is often unavoidable. To realize this without the risk of failures, detailed modelling of hydrodynamic effects is gaining more and more relevance. In this publication, an approach using flow simulation to couple hydrodynamic bearings with each other, will be introduced. This allows the state variables of the fluid in the supply bore of the crankshaft to be calculated transiently. One important aspect of this concerns the solubility of gas in oil. This paper demonstrates that the gas fractions in the supply bore of the crankshaft influence the pressures at the hydrodynamic bearings. Additionally, simulation results will be shown and also validated with measurement data. Beside the application for conventional cranktrains, the developed methodology can also be applied to investigate lubrication systems, which include innovative technologies such as hydraulic, length adjustable connecting rods employed for variable compression ratio (VCR connecting rod).
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Eccentric Imbalance of Various Crank Train Components on Vibrations in Single Cylinder Diesel Engines

Tafe Motors and Tractors Limited-Puneet Julaha, Vasundhara Arde, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2417
Published 2019-11-21 by SAE International in United States
Diesel engine is the main source of power for many agricultural applications such as water pump sets, compressors and tractors. At the same time it is also the main source of vibrations. Mechanical vibrations have instantaneous and long term effects on human body. Kinds of effects depend upon duration of exposure and frequency of vibrations. The increasing demands of improved comfort levels of operators are putting pressures on tractor manufacturers on reducing the vibration levels which thereby resulting in improving diesel engine vibrations.Vibration is the movement or mechanical oscillations about an equilibrium position of a machine or component. A Vibration analysis is about the art of looking for changes in the vibration pattern and then relating those changes. Vibration always occurs when there is unbalanced body in reciprocating or rotary motion. In an internal combustion engine there are many parts in reciprocating and rotary motion such as pistons, connecting rod, crankshaft, flywheel etc.This paper explains the study carried out to evaluate combined effect of location of unbalance in individual components when they are assembled and…
This content contains downloadable datasets
Annotation ability available

Nondestructive Measurement of Residual Strain in Connecting Rods Using Neutrons

SAE International Journal of Materials and Manufacturing

Honda R&D Co., Ltd., Japan-Tomohiro Ikeda, Ryuta Motani, Hideki Matsuda, Tatsuya Okayama
Oak Ridge National Laboratory, USA-Bunn R. Jeffery, Christopher M. Fancher
  • Journal Article
  • 05-12-03-0018
Published 2019-10-15 by SAE International in United States
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this article consists of nondestructive residual strain measurements in the interior of connecting rods using the Second Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory (ORNL), measuring the Fe (211) diffraction peak position of the ferrite…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of Aluminium-Flyash Composite for Connecting Rod

Geethanjali College of Engg. and Tech.-Suresh Nuthalapati, Devaiah Malkapuram
Published 2019-10-11 by SAE International in United States
In this modern era of rapid growth of technology and need of economical machining processes and materials, there is an increasing demand for new materials for different mechanical applications. Composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. To improve wettability, elements such as Mg and Si are added into Al melt to incorporate the ceramic particles. The chemical composition and engineering properties of fly ash, its physical and chemical properties make it an ideal raw material for producing various application based composites. The main objective is to fabricate an Aluminium- Flyash composite material suitable for parts like engine connecting rod which demand high strength and temperature sustainability at comparatively less weight. The composite will be made using casting process and Engine connecting rod will be designed in AutoCAD software. The design will be analyzed with the help of Ansys with Aluminium and Aluminium- Flyash composite (at different compositions).
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Analysis of Hybrid Metal Matrix Composite Connecting Rod via Stir/Squeeze Casting Route

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Karthik Soundarrajan, Ashokvarthanan Perumal
Published 2019-10-11 by SAE International in United States
The connecting rod was manufactured by forging process for enhancing high tensile and compressive load so that it was followed by the machining process and suite the IC engine as a part of the component. The main intern of our proposed work is to manufacture a two set of composites specimen of A356 alloy with reinforcement of 5 wt.% silicon carbide and 10 wt.% flyash processed through two different techniques like stir casting and stir cum squeeze casting route and obtain better mechanical properties. Further, the same properties were taken for modeling and analysing of the developed connecting rod model. Due to the commercial demand, the hybrid composite materials take a vigorous role in the analysis part of the connecting rod model. The FEA analysis is done on the connecting rod for a180cc engine by using Ansys 18.1. The static analysis is done by considering four different cases by altering material library property. The output parameter such as total deformation, Von Mises stress, and maximum equivalent elastic strain are taken in each condition. The analysed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Light Weight Hydraulic Connecting Rod for Agricultural Tractor

Mahindra & Mahindra, Ltd.-Mahendra Dumpa, Solairaj Perumal, Dinesh Redkar, Maxson Gomes, Prasanna Balaji Subbaiyan
Published 2019-10-11 by SAE International in United States
Hydraulic power train assembly of an agricultural tractor is meant to controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induce extreme range of loads on the hydraulic system, thus making it challenging to design these components. Hydraulic connecting rod is critical component of hydraulic power train assembly. Standards like IS12224, IS4468 governs the design of hydraulic power train components which regulates the test method for hydraulic power and lift capacity of the tractor.In this paper, a virtual simulation process has been established to design a hydraulic connecting rod to meet the requirements. The hydraulic connecting rod basically functions as a short load transferring link, which is subjected to the operating hydraulic pressure of the hydraulic lifting mechanism. The current circular connecting rod is higher in weight and cost. So, there is scope for optimizing the design of connecting rod. Virtual simulation has been done by performing (i) Multi body dynamics analysis (MBD) approach is used to predict the loads on…
Annotation ability available