Your Selections

Connecting rods
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Nondestructive Measurement of Residual Strain in Connecting Rods Using Neutrons

SAE International Journal of Materials and Manufacturing

Honda R&D Co., Ltd., Japan-Tomohiro Ikeda, Ryuta Motani, Hideki Matsuda, Tatsuya Okayama
Oak Ridge National Laboratory, USA-Bunn R. Jeffery, Christopher M. Fancher
  • Journal Article
  • 05-12-03-0018
Published 2019-10-15 by SAE International in United States
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material. The research discussed within this article consists of nondestructive residual strain measurements in the interior of connecting rods using the Second Generation Neutron Residual Stress Mapping Facility (NRSF2) at Oak Ridge National Laboratory (ORNL), measuring the Fe (211) diffraction peak position of the ferrite…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design and Analysis of Aluminium-Flyash Composite for Connecting Rod

Geethanjali College of Engg. and Tech.-Suresh Nuthalapati, Devaiah Malkapuram
Published 2019-10-11 by SAE International in United States
In this modern era of rapid growth of technology and need of economical machining processes and materials, there is an increasing demand for new materials for different mechanical applications. Composites with fly ash as reinforcement are likely to overcome the cost barrier for wide spread applications in automotive and small engine applications. To improve wettability, elements such as Mg and Si are added into Al melt to incorporate the ceramic particles. The chemical composition and engineering properties of fly ash, its physical and chemical properties make it an ideal raw material for producing various application based composites. The main objective is to fabricate an Aluminium- Flyash composite material suitable for parts like engine connecting rod which demand high strength and temperature sustainability at comparatively less weight. The composite will be made using casting process and Engine connecting rod will be designed in AutoCAD software. The design will be analyzed with the help of Ansys with Aluminium and Aluminium- Flyash composite (at different compositions).
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design and Analysis of Hybrid Metal Matrix Composite Connecting Rod via Stir/Squeeze Casting Route

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Karthik Soundarrajan, Ashokvarthanan Perumal
Published 2019-10-11 by SAE International in United States
The connecting rod was manufactured by forging process for enhancing high tensile and compressive load so that it was followed by the machining process and suite the IC engine as a part of the component. The main intern of our proposed work is to manufacture a two set of composites specimen of A356 alloy with reinforcement of 5 wt.% silicon carbide and 10 wt.% flyash processed through two different techniques like stir casting and stir cum squeeze casting route and obtain better mechanical properties. Further, the same properties were taken for modeling and analysing of the developed connecting rod model. Due to the commercial demand, the hybrid composite materials take a vigorous role in the analysis part of the connecting rod model. The FEA analysis is done on the connecting rod for a180cc engine by using Ansys 18.1. The static analysis is done by considering four different cases by altering material library property. The output parameter such as total deformation, Von Mises stress, and maximum equivalent elastic strain are taken in each condition. The analysed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design of Light Weight Hydraulic Connecting Rod for Agricultural Tractor

Mahindra & Mahindra, Ltd.-Mahendra Dumpa, Solairaj Perumal, Dinesh Redkar, Maxson Gomes, Prasanna Balaji Subbaiyan
Published 2019-10-11 by SAE International in United States
Hydraulic power train assembly of an agricultural tractor is meant to controls the position and draft of the implement depending upon the type of crop, farming stage, implement type and soil conditions. These variations induce extreme range of loads on the hydraulic system, thus making it challenging to design these components. Hydraulic connecting rod is critical component of hydraulic power train assembly. Standards like IS12224, IS4468 governs the design of hydraulic power train components which regulates the test method for hydraulic power and lift capacity of the tractor.In this paper, a virtual simulation process has been established to design a hydraulic connecting rod to meet the requirements. The hydraulic connecting rod basically functions as a short load transferring link, which is subjected to the operating hydraulic pressure of the hydraulic lifting mechanism. The current circular connecting rod is higher in weight and cost. So, there is scope for optimizing the design of connecting rod. Virtual simulation has been done by performing (i) Multi body dynamics analysis (MBD) approach is used to predict the loads on…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Engine Building Recommended Practices

Motor Vehicle Council
  • Ground Vehicle Standard
  • J2379_201910
  • Current
Published 2019-10-03 by SAE International in United States
This SAE Recommended Practice applies to the function of building reciprocating spark-ignition engines which are used in conjunction with standard and high-performance ancillary components in applications intended to achieve a minimum of 1 hp/in3. This document does not apply to rebuilt engines which may only be partially repaired with little or no machining, nor does it apply to second-hand or used engines.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Friction Reduction by Optimization of Local Oil Temperatures

University of Kassel-Oemer Oezdemir, Adrian Rienäcker
University of Stuttgart-Kevin Huttinger, Michael Bargende
Published 2019-09-09 by SAE International in United States
The reduction of engine-out emissions and increase of the total efficiency is a fundamental approach to reduce the fuel consumption and thus emissions of vehicles driven by combustion engines. Conventional passenger cars are operated mainly in lower part loads for most of their lifetime. Under these conditions, oil temperatures are far below the maximum temperature allowed and dominate inside the journal bearings. Therefore, the objective of this research was to investigate possible potentials of friction reduction by optimizing the combustion engine’s thermal management of the oil circuit.Within the engine investigations, it was shown that especially the friction of the main and connecting rod bearings could be reduced with an increase of the oil supply temperature. Furthermore, on a journal bearing test rig, it was shown that no excessive wear of the bearings is to be expected in case of load increase and simultaneous supply of cooler oil. In addition to the test investigations, MBS-(T)EHL simulation models were built up to investigate the behavior of the crankshaft bearings. Different driving profiles were simulated using GT-Suite to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization Approach to Passive Engine Mounting System for Reducing Automotive Vibrations

K. N. Toosi University of Technology-Reza Abedi, Amir H. Shamekhia
Shahid Beheshti University-Abbas Rahi
Published 2019-07-08 by SAE International in United States
Improvised noise, vibration, and harshness (NVH) performance of vehicle implies better comfort for passengers. Apart from road inputs, engine vibration is one of the major contributors to interior vibrations in automotive. The aim of this paper is to optimize specifications and locations of engine mounts to reduce vehicle vibration without affecting engine performance and to provide better ride comfort. This paper also includes the challenges involved in the analysis of engine vibration on critical conditions such as movement on the road surface or braking action. Therefore, a fully numerical simulation expands to a four-cylinder engine by considering piston side force. In this model, the mass distribution in the connecting rod and crankshaft, outside of the center pin, and friction between the cylinder and piston have been considered. Furthermore, simulation analysis is implemented for an engine in vehicle movement with constant speed on the road class B roughness and braking conditions. Engine location, the angle of placement, and dynamic characteristics of mounts are the important parameters to reduce vibrations transferred to the vehicle frame. The optimization…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

SAE 17.6 Cubic Inch Spark Plug Rating Engine

Ignition Standards Committee
  • Ground Vehicle Standard
  • J2203_201906
  • Current
Published 2019-06-11 by SAE International in United States
This SAE Standard defines the standard engine to be used in determining spark plug preignition ratings. The engine is known as the SAE 17.6 Cubic Inch Spark Plug Rating Engine.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Influence of Connecting-Rod Specifications on the Combustion-Noise Generation from a Diesel Engine

Yamaguchi University-Hitoshi Oguchi, Koki Minato, Takehiko Seo, Masato Mikami
Published 2019-06-05 by SAE International in United States
We experimentally investigated the influence of shifting natural frequencies of the internal transmission system depending on the connecting-rod specifications on the characteristics of noise radiated from a single-cylinder diesel engine. We used FFT analysis to investigate the influence of shifting natural frequencies of the internal transmission system on the radiated noise characteristics. By changing the thinned portion of the connecting-rod, we confirmed that the natural frequency of the piston-connecting-rod-coupled vibration differed from another natural frequency of the engine structure, and thus the engine noise was reduced. This research studied the time-frequency characteristics of combustion impact and engine noise by wavelet analysis of in-cylinder pressure and sound pressure. We examined the vibration-transmission characteristics through the relationship between the maximum engine noise power and the maximum combustion energy in the same cycle for the main frequencies of combustion noise. Two types of connecting-rods were used: the original connecting-rod and a connecting rod that has a short-thinned portion (STP). By shortening the thinned portion of the connecting-rod, the natural frequency of the piston-connecting-rod-coupled vibration became around 2800 Hz…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advanced Functional Pulse Testing of a Two-Stage VCR-System

FEV Europe GmbH-Markus Jesser, Kolja Orlowsky
RWTH Aachen University-Stefan Pischinger
Published 2019-04-02 by SAE International in United States
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods. Examples are the determination of the frequency response under constant load cases or the chance for in-depth sensitivity studies on the impacts of various important operational boundary conditions. Another advantage of this testing method is…
This content contains downloadable datasets
Annotation ability available