Your Selections

Compressed natural gas
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

A Technical Review on Performance and Emissions of Compressed Natural Gas – Diesel Dual Fuel Engine

Indian Oil Corp Ltd-M. Muralidharan, M Subramanian
University of Petroleum and Energy Studi-Ajay Srivastava
  • Technical Paper
  • 2019-28-2390
To be published on 2019-11-21 by SAE International in United States
In view of the depletion of energy and environmental pollution, dual fuel technology has caught the attention of researchers as a viable technology keeping in mind the increased availability of fuels like Compressed Natural Gas (CNG). It is an ecologically friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion. Generally, dual fuel technology has been prevalent for large engines like marine, locomotive and stationary engines. However, its use for automotive engines has been limited in the past due to constraints of the limited supply of alternative fuels. CNG is a practical fuel under dual-fuel mode operation, with varying degree of success. The induction method prevents a premixed natural gas-air mixture, minimizes the volumetric efficiency and results in a loss of power at higher speeds. Under lower engine operating temperatures, at low-intermediate loads, the NOx emissions reduces however HC and CO emissions are significantly increased. This paper reviews the performance and emissions of compressed natural gas (CNG) – diesel dual fuel engine.
 

Study of Handling Behavior of a Passenger Vehicle after addition of CNG Tank

Maruti Suzuki India Ltd-Lakshmi Narasimha Varma Jelli, Raghav Budhiraja, Akash goel, Deepak BAKSHI
Maruti Suzuki India, Ltd.-Rakesh K
  • Technical Paper
  • 2019-28-2405
To be published on 2019-11-21 by SAE International in United States
Objective The objective of this paper is to achieve a comparable handling performance from a vehicle fitted with a CNG tank to that of its gasoline counterpart. A validated CarSim model is run through standard handling evaluation tests before and after the addition of CNG tank. The simulation results are used to compare the handling characteristics of the CNG vehicle with the Base vehicle. Further these results are used to tune the suspension parameters to find an optimum set-up for the actual CNG vehicle. The final parameters are then evaluated in the actual vehicle to verify the study. Methodology A mix of Actual Mule vehicle testing backed by quik Car Sim Model. Full car model is first developed using CarSim by using the parameters of the actual base gasoline vehicle. The modeled vehicle is then tested for standard handling maneuvers such Double Lane Change, Constant Radius Constant Speed and Pulse Input. Further the actual vehicle is run through the exact same tests with the same inputs. The results are used to fine tune the CarSim…
 

Effect of Gasoline-Ethanol blends on GDI engine to reduce cost of vehicle ownership

Mahindra & Mahindra-Karthikeyan N Krishnan
Mahindra & Mahindra Ltd-Kartick Ramakrishnan, Padmavathi Ramadandi
  • Technical Paper
  • 2019-28-2379
To be published on 2019-11-21 by SAE International in United States
A major challenge for combustion development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline and CNG are such alternative fuels. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance. Second, the thermal efficiency of the ethanol blend is calculated as a linear function of theoretical Otto cycle efficiency. The engine performance for varying compression ratio & ethanol gasoline blend is studied for vehicle level using a MATLAB code. Third, 1D code was run to simulate the high-speed exhaust temperature & low speed knock intensity, this is…
 

CNG injector performance analysis against variation of physical and electrical parameters: An alternate fuel approach

Noida Inst. Of Engineering Tech.-Udit Kaul
  • Technical Paper
  • 2019-28-2389
To be published on 2019-11-21 by SAE International in United States
Authors: Udit Kaul, Mahendarpal and Madhusudan Joshi Organization: International Centre for Automotive Technology, Manesar Introduction: In this paper, a study concerning multi-point CNG injectors (MPCI) or commonly known as injector rail would be presented. Here we would make a detailed analysis regarding the performance of MPCIs due to variation in physical and electrical parameters. In this case multiple MPCIs would be considered and there electrical and dimension parameters would be compared with respect to their performance. The performance comparison would be done based on the common compliance standard under standard laboratory conditions. We would also like to propose the optimal combination of electrical and dimension parameters for better performance. The variables to be considered for the proposed study are: injector valve open/shut timing, injector dimension, voltage levels, solenoid types etc. Key words : multi-point CNG injectors, injector valve, solenoid
 

Approach for CO2 Reduction in India’s Automotive Sector

Maruti Suzuki India Ltd.-Gaurab Bhowmick, Dr. Tapan Sahoo, Anoop Bhat, Gaurav Mathur, Deepak Gambhir
  • Technical Paper
  • 2019-28-2388
To be published on 2019-11-21 by SAE International in United States
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%. India contributed ~11% of transport emissions in Asia in 2016. This necessitates systematic approach and action plans to curb India’s vehicular…
 

Estimation of Fuel Consumption and CO2 Emissions of Car Travel in Transportation Planning: the Lazio Region Case Study

Niccolò Cusano University-Paolo Delle Site
Sapienza University-Sonia Briglia
  • Technical Paper
  • 2019-24-0252
To be published on 2019-10-07 by SAE International in United States
The reduction of oil dependence and CO2 emissions have been included in the set of policy objectives by the European Union, according to the latest White Paper on transportation. Car travel is heavily dependent on oil, with minor exceptions represented by CNG (compressed natural gas) and all-electric vehicles. There is a tight relationship between CO2 emissions, almost unanimously recognized as main determinant of climate change, and fuel consumption. The paper provides a comparative analysis of two methods that can be used in transportation planning for the estimation of fuel consumption and CO2 emissions of car travel. The first method uses consumption and emission factors per vehicle-km travelled that are based on average network speed. The second method uses consumption and emission factors that are specific of the individual links of the network. In the second case, the link-specific average speed and flow that result from the assignment of the origin-destination travel demand matrix to the road network, subject to congestion, are the inputs of consumption and emission estimation. Link-specific travel times and flows, in a…
 

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline and CNG

Istituto Motori CNR-Paolo Sementa, Francesco Catapano, SILVANA Di Iorio, Bianca Maria Vaglieco
  • Technical Paper
  • 2019-24-0236
To be published on 2019-10-07 by SAE International in United States
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline and compressed natural gas (CNG) combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in an real small Spark Ignition (SI) engine fueled with Gasoline and CNG and equipped with a proper designed passive prechamber. In particular, Gasoline and CNG were used to analyze the effects of the prechamber on engine performance and associated pollutant emissions. Indicated Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and lean condition…
 

A Novel 1D Co-Simulation Framework for the Prediction of Tailpipe Emissions Under Different IC Engine Operating Conditions

Aristotle University of Thessaloniki-Grigorios Koltsakis, Zissis Samaras
EMPA-Panayotis Dimopoulos Eggenschwiler, Viola Papetti, Jakub Rojewski, Patrik Soltic
  • Technical Paper
  • 2019-24-0147
To be published on 2019-09-09 by SAE International in United States
The prediction of the pollutants emitted by internal combustion engines during driving cycles has been a challenge since the introduction of the emission regulation legislation. During the last decade, along with the more tightening limits and increased public concern about the matter of air quality, the possibility of simulating various driving tests with cost effective computing facilities has become a key feature for modern simulation codes. Many 1D simulation tools are available on the market, offering real time models capable of achieving the simulation of any driving cycle in limited time frames. These approaches are based on the extreme simplification of the engine geometry and on the adoption of engine maps, which, for any engine operating condition, give the engine output in terms of power, or torque, and of exhaust gas composition. Specific fluid dynamic models are used to track the composition along the exhaust system and, with the aid of ad-hoc modules, to evaluate the conversion efficiency of after-treatment devices, such as TWC, GPF, DPF, DOC, SCR and so on. This work is based…
 

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

FPT Industrial SpA-Stefano Golini, Francesco Giovanni Rutigliano
Istituto Motori CNR-Carlo Beatrice, Valentina Fraioli
  • Technical Paper
  • 2019-24-0074
To be published on 2019-09-09 by SAE International in United States
A growing interest in heavy-duty engines powered with CNG dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel (A/F) ratio. A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined lambda variation pattern of the engine exhaust stream, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions at the tailpipe. A surface reactions kinetic mechanism, concerning CH4, CO, H2 oxidation and NO reduction, has been appropriately calibrated with a step-by-step procedure in steady-state in the engine work plan at different A/F ratios…
 

Bullish on biomethane

SAE Truck & Off-Highway Engineering: June 2019

based on presentation by CNH Industrial's Hubertus Mühlhäuser-Ryan Gehm
  • Magazine Article
  • 19TOFHP06_01
Published 2019-06-01 by SAE International in United States

The CEO of CNH Industrial says biomethane is cleaner path than electric, as Case demos the alt fuel in cool wheel-loader concept.

Hybrid and electric powertrains were omnipresent at bauma 2019 in Munich, with several OEMs and engine manufacturers showcasing electrified machines in near-production form. But CNH Industrial bucked that trend, touting the many benefits of biomethane instead.

Annotation icon