Your Selections

Composite materials
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Study on Static and Fatigue Behavior of a Short Glass Fiber Reinforced Polypropylene

FCA US LLC-Mingchao Guo, Congyue Wang, Jian Tao, Ramchandra Bhandarkar
InDepth Engineering Solutions-Johnson Joseph
  • Technical Paper
  • 2020-01-0190
To be published on 2020-04-14 by SAE International in United States
One approach of reducing vehicle weight is using composite materials. Fiber reinforced polypropylene is one of the most popular composite materials. To improve accuracy in prediction of durability performance of structures made of this kind of composite material, static and fatigue properties of a 30% fiber reinforced polypropylene have been physically studied. This paper describes details of test coupon design, fabrication and test setup of both quasi static and fatigue tests. In this study, various fiber orientation (0, 20, 90 degrees & knit line), temperature (-40, 23 and 80 degree C), mean stress (R=-1.0, -0.5, -0.2, 0.1 and 0.4) have been considered and the result of the tests discussed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

LOW COST ELECTROMAGNETIC SHIELDING MATERIAL BASED ON POLYPYRROLE-BIO WASTE COMPOSITES

Dongguk University-Ganapathi Nagarajan
Hindustan University-Sheeba Rathina Selvi, Srimathi Krishnaswamy, Puspamitra Panigrahi
  • Technical Paper
  • 2020-01-0226
To be published on 2020-04-14 by SAE International in United States
There is a crucial need of Electromagnetic interference shielding in many of the applications in this digital world with low cost and high efficient shielding materials. Electrically conducting heterocyclic polymer polypyrrole has found its application as an EMI shielding materials due to its conducting property. Electrically conducting polypyrrole (PPy) coated on coconut fibres (coir) with different morphology, were prepared through in-situ chemical polymerization of PPy using strong oxidizing agent like ammonium per sulfate. The synthesized PPy on coconut fibre were characterised using UV-Visible spectrophotometer(UV-VIS) and Fourier transform infrared spectroscopy (FTIR) which confirmed the product formation. The morphology was done using Scanning electron Microscopy(SEM).Thermal studies were performed by Thermo Gravimetric analysis (TGA). The effect of PPy morphology and content in composite with coir on the DC conductivity and shielding effectiveness (SE) were investigated. The shielding effectiveness was calculated theoretically and well matched with the experimental values.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Fabrication of Carbon Fibre/Epoxy-Aluminum Hybrid Suspension Control Arms for Formula SAE Race Car

ARAI FID PUNE-Pramod Hande
Vellore Institute of Technology-Mayank Gupta, Akash Porwal, Harshvardhan Rao Budi, Padmanabhan Krishnan
  • Technical Paper
  • 2020-01-0230
To be published on 2020-04-14 by SAE International in United States
Suspension system of a vehicle plays an important role to carefully control motion of the wheel throughout the travel. The vertical and the lateral dynamics (ride and handling) is affected by the unsprung-to-sprung mass ratio. Lower value of this mass ratio leads to enhanced performance of the car. To optimize the unsprung mass of the car, design of control arm plate is optimized with Aluminum material and Carbon fibre reinforced composite control arms framework are used to achieve high stiffness to weight ratio. These leads to increase in overall power to weight ratio of the car which helps to deliver maximum performance to the wheels. Through analysis of real-life working conditions of the entire steering knuckle assembly in ACP pre- post ANSYS 18.1 with the defined boundary conditions, equivalent stress and total deformations are obtained. Based on the results, geometrical topology of the control arms plates is further optimized. After several tensile tests on different bond length and bond gap,the outer surface of control arm tube were bonded to inner surface of control arm plate…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electrical Heated Epoxy Tool for Rotational Molding Application

John Deere India Pvt., Ltd.-Sorna Rajendran Gandhi, Amit S Patil
  • Technical Paper
  • 2020-01-0234
To be published on 2020-04-14 by SAE International in United States
The conventional method of making rotational molding part is by heating the cast aluminum mold or sheet metal mold by hot air medium which has its own limitation on energy loss, the other means is by direct heat and cold of mold by passing hot oil/water in the mold to have better energy efficiency but leakage and safety problems associated with pumping pressurized hot oil / Water. There is no solution available for prototyping rotational molding parts using design intended material. The current practice of prototyping with conventional method is expensive and time-consuming. In this work, a simple method is presented to produce a rotational molded part with breakthrough in mold construction, which is Composite Mold Technology (CMT) with glass fiber reinforced epoxy resin built-in with electrical heaters. Project focuses is on proving CMT in comparison with the current production method. CMT reduce the cost by 90% and time to build Protomold by 30%. This electrical heated CMT can be used for new product development (NPD) and very low volume production as the cycle time of the part development was observed very high and life mold is yet to be tested. Deeper study of the life…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Functionality analysis of thermoplastic composite material to design engine components

Politecnico di Torino-Abbas Razavykia, Cristiana Delprete, Carlo Rosso, Paolo Baldissera
  • Technical Paper
  • 2020-01-0774
To be published on 2020-04-14 by SAE International in United States
Developing of innovative technologies and materials to meet the requirements of environmental legislation on vehicle emissions has paramount importance for researchers and industries. Therefore, improvement of engine efficiency and fuel saving of modern internal combustion engines (ICE) is one of the key factors, together with the weight reduction. Thermoplastic composite materials might be one of the alternative materials to be employed to produce engine components to achieve these goals as their properties can be engineered to meet application requirements. PEI-AS4 unidirectional thermoplastic composite is used to design engine connecting rod and wrist pin, applying commercial engine data and geometries. The current study is focused on some elements of the crank mechanism because the weight reduction of these elements affects not only the curb weight of the engine but the overall structure. As a matter of fact, by reducing the reciprocating mass, alternate force will be reduced and hence the size of the structural elements. Also, other elements of the engine can be designed for lightweighting but the crank mechanism elements maximize the effect, by reducing…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

CATARC-Chunjing Lin, Yuhan Sun
Tongji University-Zhao Li, Sichuan Xu
  • Technical Paper
  • 2020-01-0866
To be published on 2020-04-14 by SAE International in United States
The thermophysical parameters and amount of composite phase change materials (PCMs) have a decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

University of Windsor-Morteza Alebooyeh, Bowen Wang, Ruth Jill Urbanic
  • Technical Paper
  • 2020-01-1304
To be published on 2020-04-14 by SAE International in United States
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks. Pick and place experiments on a 0/90 woven carbon fiber fabric with an innovative gripper design is tested using a YuMi 14000 ABB collaborative robot to validate the new-designed gripper enhanced performance on the grab, microscopic thread damage, slippage and material wrinkling based on the previous research [1] for two gripping forces, and two travel speeds. Also, different double-arm pick-move-place scenarios are sought to achieve an acceptable approach through which fabric de-wrinkling…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CAE Modeling Static and Fatigue Performance of Short Glass Fiber Reinforced Polypropylene Coupons and Components

FCA US LLC-Congyue Wang, Mingchao Guo, Mohan Shanmugam, Ramchandra Bhandarkar
  • Technical Paper
  • 2020-01-1309
To be published on 2020-04-14 by SAE International in United States
Fiber reinforced polypropylene (FRPP) is a typical anisotropic composite and its material properties highly depend on the fiber orientations within the material. To improve accuracy in prediction of durability performance of structures made of this kind of composite material, simulation of manufacturing process is necessary to obtain distribution of fibers and their orientations at every location of the structure. This paper describes a CAE modeling techniques to simulate 1) injection molding process, 2) static and fatigue performance of coupons and 3) static and fatigue performance of components made of 30% FRPP. Details of CAE model setup, analysis procedures and correlation between analysis and test results are presented. In this study, various fiber orientation (0, 20, 90 degrees & knit line), temperature (-40, 23 and 80 degree C) and mean stress (R=-1.0, -0.5, -0.2, 0.1 and 0.4) have been considered. To demonstrate correlation, battery trays made of this FRPP have been tested subjected to block cycle loads, results of which have been discussed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Exmani-Heat protector to Improve Sound Absorption using New Perforated Thin Aluminum Plate

Hyundai Motor Group-Jaegi Sim, Minsoo Kim, KwangMin Yoon
  • Technical Paper
  • 2020-01-0405
To be published on 2020-04-14 by SAE International in United States
This technology is a technology for reducing the gas flow noise generated from the noise of the vehicle, especially the exhaust system. The primary function of the heat protector is thermal shutdown. However, due to the increase in engine power, downsizing of engines, and the rise of consumer's eye level, solutions about noise are now emphasized. Established the manufacturing technology of 3-ply composite board which can absorb sound in the existing heat protector. For this purpose, mold technology for punching aluminum sheet, optimization technique for punching effect, unique high-strength / high-forming pattern design, sound absorbing material selection and composite sheet molding technology, and noise vibration reduction mounting technology for plate joining were developed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Phenolic SMC for Automotive Fire Resistance

Hexion Inc.-Ian Swentek, Cedric A. Ball, Stephen Greydanus, Kameswara Rao Nara
  • Technical Paper
  • 2020-01-0771
To be published on 2020-04-14 by SAE International in United States
Phenolic resins that meet REACH compliance and contain lower free-formaldehyde are safer to handle, compound, and mold. These resin systems do not contain any styrene or require any fillers to achieve their rated fire resistance. A commercial phenolic sheet-molding compound (SMC) is presented that achieves a 2-minute cycle time and addresses the unique requirements in an electrified vehicle architecture. This new SMC material includes all the industrially relevant considerations including material processing, shelf life, and surface finish. Other topics such as material hybridization and comparison to incumbent materials also discussed. The resin system uses a water-based phenolic resole which is acid-cured. This chemistry presents several unique challenges and opportunities for the industry such as managing formulation pH and appropriate methods for quality control. A demonstrator battery cover highlights the superior fire performance, impact resistance, and light weighting that is achieved with this resin technology. The phenolic SMC formulation is compatible with already established engineering fibers and textiles resulting in low-shrink, creep-resistant composites. The mechanical performance demonstrates strength and impact energy absorption greater than cast aluminum,…