Your Selections

Commercial vehicles
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Child Safety Lock Override Mechanism - For Woman Safety

Hyundai Motor India Engineering PVT LTD-Ravi Kumar S, Priya K
  • Technical Paper
  • 2019-28-2403
To be published on 2019-11-21 by SAE International in United States
Child safety lock override mechanism - For Woman Safety Woman safety is a major concern in present world and the related laws ensure that government also cares for it. Mostly in public taxies, there is possibility for the driver to harass women occupant by activating the child safety lock without her knowledge. Purpose of child safety lock is to prevent child in the rear seat from opening the door and fall from vehicle. This will cause severe injury to the child. When child lock is ON, Inside Door handle becomes inoperative and the child cannot open the door. Only way to open door is through outside handle. But there is possibility for Taxi driver to kidnap the woman customer by enabling child safety lock, so that inside handle becomes inoperative and make her get trapped in car. To prevent such cases in future, Ministry of Road Transport ordered the manufacturers to delete child safety lock for all commercial vehicles. But even then, Child in rear seat of a taxi (Without child lock) and women in…
 

Aerodynamic analysis of commercial vehicle using active vortex generators concept

ARAI-Kamalkishore Vora
ARAI ACADEMY, PUNE-Saurabh Jayant kulkarni
  • Technical Paper
  • 2019-28-2409
To be published on 2019-11-21 by SAE International in United States
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent. The simulation result shows the significant drag coefficient reduction of the commercial vehicle with…
 

Replacing twin electric fan radiator with Single fan radiator

Tata Technologies Ltd-Gaurav Soni, Aashish Bhargava, Vivek Anami, Tushar Warkhade
  • Technical Paper
  • 2019-28-2381
To be published on 2019-11-21 by SAE International in United States
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction. Further Cooling system performance of engine is evaluated along with Fuel efficiency; results are compared with present configuration.
 

Future hybrid Vehicles with advanced 48V electrified drive train technology to reduce Co2 emission

Mercedes-Benz R&D India Pvt Ltd-Chandrakant Palve, Pushkaraj Tilak
  • Technical Paper
  • 2019-28-2487
To be published on 2019-11-21 by SAE International in United States
Future hybrid vehicles with advanced 48V electrified drive train technology to reduce CO2 emission. Chandrakant Palve* Pushkaraj Tilak * * Mercedes-Benz Research & Development India Pvt. Ltd. Bangalore. India. Key Words: 48V, CO2, P3 Hybrid, Electrified powertrain, AMT, emission, shift comfort, motor Research and/or Engineering Questions/Objective Global automotive industry is putting effort in moving from conventional powertrain technology to hybrid & electric powertrains. This efforts plays a vital role to achieve cleaner environment, improved performance, reduced fossil-fuel dependency, low noise for meeting regulatory & customer requirements. Automotive industry is facing a challenge of meeting stringent CO2 emission targets of 95g & 175g per kilometer for passenger cars & light commercial vehicles respectively. 48V is an important stepping stone in this direction. By taking motivation from this strategic challenge, advanced 48V P3 electrified powertrain technology has been proposed. The objective of this research is a novel electrified powertrain which offers Dual Clutch Transmission (DCT) level of shift comfort in combine with CO2 benefit without additional cost and weight penalty. Methodology The present study describes a unique…
 

A Philosophy of Full Vehicle Simulation for analysing the Road NVH Problems

Altair Engineering India Pvt Ltd-Azan Parmar
Altair Engineering India Pvt , Ltd.-Hari Krishna Reddy
  • Technical Paper
  • 2019-28-2491
To be published on 2019-11-21 by SAE International in United States
Road and Engine borne noise are the most prominent sources of noise in any commercial vehicle. With advancement in technology and encouraging prospects in hybrid & electric vehicles, road noise can be set aside as the single most dominant source for vehicular NVH problems. In this paper, a full vehicle model is considered for complete NVH simulation with two acoustic and two structural response points. Random road excitations are applied at various vehicle speeds to determine the response characteristics. An elaborate study is conducted to understand the effects of vehicle speed and road conditions on the vehicle. An attempt is also successfully made to diagnose the effects of road excitations on the system behaviour by considering the suitable transfer functions. The methodology can be readily extended to any type of vehicle and speed as the excitations are independent of these parameters. Further, full vehicle model is examined to evaluate the panel and modal participation to the random response obtained
 

Development of low cost life saving system for Automotive vehicles during Road Accidents.

Tata Technologies, Ltd.-Sachin Madhukarrao Pajgade
  • Technical Paper
  • 2019-28-2460
To be published on 2019-11-21 by SAE International in United States
According to research study 45% of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also loose the power to fight such critical situation due to psychological effect. When vehicle met accident, people are not getting on time support, this delay is the major cause of death in developing nations. Presently there is no any robust system available in market for passenger & commercial vehicles which helps to provide on time help to the injured persons & saves human life. In current situation low cost life saving device is need of our society. This paper deals with the design & development of the low cost-life saving device. This paper also comprises the scenario when any vehicle meet an accidents within certain speed limit then how the intelligent life saving device will work & save the life's. Further it explains the type of life saving device design, logical programming and system packaging. The system has been…
 

Model Based Design of Chassis-Frame with MATLAB

VE Commercial Vehicles Ltd.-Rishabh Singh parihar, Gaurav Sharma, Nitinkumar patil, Yogendra Aniya
  • Technical Paper
  • 2019-28-2429
To be published on 2019-11-21 by SAE International in United States
In the current commercial vehicles market, ride-comfort and handling are crucial parameters for the customer and end user. There are various aspects which determine the vehicle behaviour. One of aspects is the structural rigidity of the vehicle, which has its own effect on vehicle dynamics. To meet the required stiffness of the main structural component of the vehicle i.e. chassis frame, FEA analysis has to be done in current methodology. The number of iterations have to be done to build an appropriate model with low weight, which can meet the design requirements. At first, conceptual design mock-up unit is to be developed then FEA (CAE) analysis to be done on it. If any design criteria are not met, then this cycle repeats again until it fulfils the required stiffness. Today, the direct stiffness procedure is the basic principle of almost every FEA software package. In this paper, computer code based on MATLAB software is provided and presented for the analysis of the chassis frame using the direct stiffness method. The code, models a structure of…
 

Thermal Challenges in Automotive Exhaust System through Heat Shield Insulation

Sharda Motor industries limited ( R&D )-Rajadurai S
  • Technical Paper
  • 2019-28-2539
To be published on 2019-11-21 by SAE International in United States
While advanced automotive system assemblies contribute greater value to automotive safety, reliability, emission/noise performance and comfort, they are also generating higher temperatures that can reduce the functionality and reliability of thesystem over time. Thermal management and insulation are extremely important and highly demanding in BSVI, RDE and Non-IC engine operating vehicles. Passenger vehicle and Commercial vehicle exhaust systems are facing multiple challenges such as packaging constraints, weight reduction andthermalmanagement requirements.Frugal engineering is mandatory to develop heat shield in the exhaust system with minimum heat loss. The focus of the paper is to design, develop and validate heat shield products with different variables such as design gap, insulation material, sheet metal thickness and manufacturing processes. 1D and 3D computational simulations are performed with different gaps from 3 mm to 14 mm are considered. Heat protection of about 75% is achieved ( from 614°C to 140°C) using different insulation materials. Sheet metal thicknesses from 0.15 mm to 1 mm with different manufacturing processes are used in the wrap around, closed and open type protections. Computational simulation and…
 

Inspection and Maintenance of In-Use Motor Vehicles – Mitigating Environmental impact

International Centre For Automotive Tech-Aditya Gautam
International Centre For Automotive Tech.-Vijayanta Ahuja
  • Technical Paper
  • 2019-28-2427
To be published on 2019-11-21 by SAE International in United States
The existing rule no. 62 of CMVR, 1989 applies to various commercial vehicles and yet is unable to provide a promising template to have a concise format which will cover all the motor vehicles and their different components with more precise equipment plus virtual testing along with proper management of time during the bulk inspection of all the vehicles. This paper will include all the technicalities and the different course of actions which must be taken into account for the proper implementation of the desired regulations on the designated concern. The idea behind this paper is to have a compact procedural document for the periodical inspection and maintenance of all the motor vehicles running on the Indian Roads that adhere to the basic safety concerns of other on-road vehicles, the pedestrians and the surroundings. Concluding the fact that there are various aspects of environmental degradation henceforth we start by picking one of the hazards trying to execute a method to resolve every respective issue on a micro level, thus eliminating maximum threats onto the environment.…
 

Optimization of Compression Ratio for DI Diesel Engines for better fuel Economy

Tata Technologies Ltd-Aashish Bhargava, Gaurav Soni
Tata Technologies, Ltd.-Sujit Gavade
  • Technical Paper
  • 2019-28-2431
To be published on 2019-11-21 by SAE International in United States
Fuel economy is becoming one of the key parameter as it not only accounts for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, improved volumetric efficiency, improved thermal efficiency etc. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include; combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected. Further Engine testing carried out with selected Compression ratios and parameters such as Fuel efficiency, In cylinder pressure, Brake thermal efficiency and Ignition delay were compared.