Your Selections

Combustion chambers
Show Only


File Formats

Content Types











Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…

Experimental Investigation on Performance and Emission Characteristics of a Single Cylinder CRDI Engine Fueled with Diesel-Methanol Blend

Sridhar SAHOO, Chinmay Nayak, Srinibas Tripathy, Dhanajay Srivastava
  • Technical Paper
  • 2019-28-2380
To be published on 2019-11-21 by SAE International in United States
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend. Experiments were carried out at a constant engine speed of 1500 rpm and load 15 Nm. FIP governs fuel atomization and air-fuel mixture preparation controlling combustion behavior of the engine, whereas…

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

Hindustan Institute of Tech. & Science-Sangeethkumar Elumalai, Jaikumar Mayakrishnan, Sasikumar Nandagopal, Selvakumar Raja, Ramanathan Velmurugan
  • Technical Paper
  • 2019-28-0164
To be published on 2019-10-11 by SAE International in United States
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification was carried out to analyse the behaviour of the selected test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipment in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs. WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work. In the fifth phase of the study, combustion chamber components like piston,…

Effect of Injector cone angle and NTP on performance and emissions of CRDe engine for BS6 compliance

Mahindra Research Valley-Anbarasu Muthusamy, Vagesh Shangar Ramani, Pranav Kumar Sinha
  • Technical Paper
  • 2019-28-0108
To be published on 2019-10-11 by SAE International in United States
The quality of combustion is affected by factors like engine components design, combustion chamber design, EGR, after treatments systems, engine operating parameters etc. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum injection timing. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which decide the selection of perfect injector for an engine. This paper focuses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP which was varied by changing the sealing washer thickness. With all the above injector configuration, the performance and emission were thoroughly analysed at each level. Final configuration was selected based on the Power & Torque, Fuel consumption, smoke, exhaust temperatures.

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

Istituto Motori CNR-Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
  • Technical Paper
  • 2019-24-0233
To be published on 2019-10-07 by SAE International in United States
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many index and methodologies has been proposed. In this work, most used methods for knock onset detection from in-cylinder pressure analyses have been considered. Moreover, same methodologies were applied also to the ionization signal collected through the spark plug, properly instrumented. High speed imaging has been carried out in the combustion chamber of a high performance DISI engine provided…

How to Improve SI Engine Performances by Means of Supercritical Water Injection

University of Basilicata – Potenza 85100-Antonio Cantiani, Annarita Viggiano, Vinicio Magi
  • Technical Paper
  • 2019-24-0235
To be published on 2019-10-07 by SAE International in United States
The efficiency of ICEs is strongly affected by the heat losses of exhaust gases and engine cooling system, which account for about 60% of the heat released by combustion. Several technologies were developed to recover waste heat in ICEs, from turbochargers to ORCs, Stirling cycles and piezoelectric generation. A promising approach is to transfer the waste heat to a fluid, like water, and inject it into the combustion chamber. In such a way, the recovered energy is partially converted into mechanical work, by improving both engine efficiency and performance. In this work, the engine benefits obtained by using supercritical water as the vector to recover heat losses are analysed. Water has been chosen since it has a relatively high heat capacity and can be extracted directly from exhaust gases. A quasi-dimensional model has been implemented to simulate the ICE work cycle. Specifically, in this paper a spark ignition ICE, four-stroke with port fuel injection (PFI) has been considered. The model accounts for gas species properties (Janaf tables and CoolProp libraries) and includes valves opening/closing laws,…

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro IV Heavy-Duty Diesel Engine with High EGR-Rates, an In-cylinder Peak Pressure of 250 bar and an Injection Pressure up to 2500 bar

Daimler AG-Christian Hennes, Jürgen Lehmann
KIT Karlsruhe Institute Of Technology-Thomas Koch
  • Technical Paper
  • 2019-24-0171
To be published on 2019-09-09 by SAE International in United States
A raise of efficiency is, especially for CV, the strongest selling point concerning the TCO. Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. The losses resulting from taking real gas properties and non-ideal combustion into account have only a limited potential for gains, wall heat losses are currently believed to have the highest optimization potential. Critical for the occurrence of these losses is the wall heat transfer, which can be described by coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is needed to determine the WHT relations at the combustion chamber of an engine. Methods to reduce the WHT can be developed and their effectiveness can be evaluated. As this is not done before for a heavy-duty engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high EGR-rates is presented the following. The different methods to determine…

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing a Production SACI Strategy

Clemson University-Dennis Robertson, Robert Prucka
  • Technical Paper
  • 2019-24-0027
To be published on 2019-09-09 by SAE International in United States
Low temperature combustion (LTC) strategies have been a keen interest in the automotive industry for over four decades since they offer improved fuel efficiency compared to conventional spark-ignition (SI) engines. LTC strategies use high dilution to keep combustion temperatures below about 2000 K to reduce heat transfer losses while avoiding locally rich in-cylinder regions that produce high soot. High dilution also enables an efficiency improvement from reduced pumping work and improved thermodynamic properties, though it requires high ignition energy. Combustion can be achieved by triggering autoignition from compression energy. High compression ratios are typically required to produce this level of ignition energy, which further improves fuel efficiency. The timing of the autoignition event is influenced by fuel properties and mixture composition, and is exponentially sensitive to temperature. Control of autoignition timing is difficult without a direct actuator, and has been a significant obstacle for realizing LTC in production. Spark-assisted compression ignition (SACI) addresses this challenge by using a spark plug to initiate chemical reactions that trigger autoignition. The combustion chamber is slightly stratified to promote…

Nozzle Flow and Spray Development One-way Coupling Methodology for a Multi- Hole GDi Injector

AKKA-Stefano Bergamini
Toyota Motor Corp-Jun Miyagawa, Kazuhiro Uehara, Yasushi Noguchi
  • Technical Paper
  • 2019-24-0031
To be published on 2019-09-09 by SAE International in United States
With future emission regulations, progressively tighter limitations on particulate number (PN) will be applied on GDi engines. The fuel spray plays an important role on PN formation as it directly affects the homogeneity of air fuel mixture. So detailed investigation of spray characteristics is required. To reduce high prototyping cost and time of making a new injector, a predictive spray model can be used to simulate nozzle flow and spray formation. However, those models are challenging due to the complex and multi-phase phenomena occurring in the combustion chamber, but also because of the different spatial and temporal scales in the different components of the injection systems. This work presents a methodology developed to accurately simulate the spray formation by Discrete Droplet Models (DDM) without experimentally measuring the injector mass flow rate and/or momentum flux. Transient nozzle flow simulations are used instead to define the injection conditions of the spray model. The methodology is applied for the first time to a multi-hole Gasoline Direct injection (GDi). Firstly, the DDM constant values are calibrated comparing simulation results…

Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains

FEV Europe GmbH-Knut Habermann
IFP Energies Nouvelles, Institut Carnot IFPEN TE-David Serrano, Jean-Marc Zaccardi
  • Technical Paper
  • 2019-24-0104
To be published on 2019-09-09 by SAE International in United States
Lean burn gasoline spark-ignition engines can support the reduction of CO2 emissions for future hybrid passenger cars. Very high efficiencies and very low NOx raw emissions can be achieved, if relative air/fuel ratios (lambda) of 2 and above can be reached. The biggest challenge here is to assure a reliable ignition process and to enhance the fuel oxidation in order to achieve a short burn duration and a good stability for the combustion. This article aims at introducing an innovative combustion system fully optimized for ultra-lean operation and very high efficiency. Thereto, a new cylinder head concept has been realized with high peak firing pressure capability and with a low surface-to-volume ratio at high compression ratios. 1D and 3D simulations have been performed to optimize the compression ratio, charge motion and intake valve lift. Numerical calculations also supported the development of the ignition system. Stable ignition and fast flame propagation were achieved thanks to a centrally located active pre-chamber which allows to control the air/fuel ratio independently of the air/fuel ratio in the main combustion…