Your Selections

Combustion chambers
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Effects of Water Injector Spray Angle and Injector Orientation on Emission and Performance of a GDI Engine - A CFD Analysis

Indian Institute of Technology Madras, India-Ankit Ashokrao Raut, J.M. Mallikarjuna
  • Journal Article
  • 03-13-01-0002
To be published on 2020-02-28 by SAE International in United States
Higher water evaporation and proper water vapor distribution in the cylinder are very vital for improving emission and performance characteristics of water-injected engines. The concentration of water vapor should be higher and uniform near the walls of the combustion chamber and nil at the spark plug location. In direct water-injected engines, water evaporation, vapor distribution, and spray impingement are highly dependent on injector parameters, viz., water injector orientation (WIO), location, and spray angle. Therefore, in this article, a computational fluid dynamics (CFD) investigation is conducted to study the effects of water injector spray angle (WISA), and WIO on the water evaporation, emission, and performance characteristics of a four-stroke, wall-guided gasoline direct injection (GDI) engine. The WISA is varied from 10° to 35°, whereas the WIO is varied from 15° to 35° in steps of 5°. The water is injected in the compression stroke with an optimum injection pressure of 50 bar. Water-to-fuel (W/F) ratio and spark timing are fixed at their optimum values with a compression ratio (CR) of 13.5. The engine is operated at…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation on Performance and Emission Characteristics of a Single Cylinder CRDI Engine Fueled with Diesel-Methanol Blend

Sridhar Sahoo, Chinmay Nayak, Srinibas Tripathy, Dhanajay Srivastava
  • Technical Paper
  • 2019-28-2380
To be published on 2019-11-21 by SAE International in United States
The diesel engine is widely used for its high thermal efficiency and better fuel conversion efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuels as a replacement to conventional diesel. Biofuels produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blended fuel in the diesel without affecting engine design. In this study, the effect of diesel methanol blends and injection parameters such as fuel injection pressure (FIP)and start of injection (SOI) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and iso-butanol to get a stable blend. Experiments were carried out at a constant engine speed of 1500 rpm and load 15 Nm. FIP governs fuel atomization and air-fuel mixture preparation controlling combustion behavior of the engine, whereas…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

Hindustan Institute of Tech. & Science-Sangeethkumar Elumalai, Jaikumar Mayakrishnan, Sasikumar Nandagopal, Selvakumar Raja, Ramanathan Velmurugan
  • Technical Paper
  • 2019-28-0164
Published 2019-10-11 by SAE International in United States
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification were carried out to analyse the behaviour of the test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipments in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs.WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work. In the fifth phase of the study, combustion chamber components like piston, cylinder head…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

Mahindra Research Valley-Anbarasu Muthusamy, Vagesh Shangar Ramani, Pranav Kumar Sinha
  • Technical Paper
  • 2019-28-0108
Published 2019-10-11 by SAE International in United States
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP. The nozzle tip protrusion of the injectors were varied by changing the sealing washer thickness. With all the above injector configurations, the performance and emission were thoroughly analysed at every level. Final confirmation of the configuration was selected based on…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design and Analysis of De-Lavel Restrictor with Throttle Body for Formula Vehicle

Force Motors Limited-Pradeep Chandrasakaran
Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Aswin Sriram Thiyagarajan, Sathishkumar Kuppuraj
  • Technical Paper
  • 2019-28-0009
Published 2019-10-11 by SAE International in United States
The restrictor is a component which controls the mass flow of air passing to the engine. The proposed work focuses on design and analysis of air intake restrictor of Duke 390cc engine which is used in formula vehicles. As an constrain of this system, the air flows through a single circular throat of diameter 20mm. In past decades conventional venture nozzles were used as a restrictor but it leads to nominal press drop. A de lavel nozzle is a tube pinched in the middle, making an asymmetric hourglass shape. It is used to accelerate a higher supersonic speed in the axial direction. The main objective is to utilize De-Laval Nozzle for the minimal pressure drop. The change in pressure will increases the engine power output. The analysis is done by varying design conditions such as three levels of convergent (12,14 and 16 degrees) and three levels of divergent angles (4, 6 and 8 degrees) are taken into consideration. After numerous CFD Simulations, it is inferred that the optimal angles of 14 and 4 degrees for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Knock Onset Detection Methods Evaluation by In-Cylinder Direct Observation

Istituto Motori CNR-Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
Published 2019-10-07 by SAE International in United States
Improvement of performance and emission of future internal combustion engine for passenger cars is mandatory during the transition period toward their substitution with electric propulsion systems. In middle time, direct injection spark ignition (DISI) engines could offer a good compromise between fuel economy and exhaust emissions. However, abnormal combustion and particularly knock and super-knock are some of the most important obstacles to the improvement of SI engines efficiency. Although knock has been studied for many years and its basic characteristics are clear, phenomena involved in its occurrence are very complex and are still worth of investigation. In particular, the definition of an absolute knock intensity and the precise determination of the knock onset are arduous and many indexes and methodologies has been proposed.In this work, most used methods for knock onset detection from in- cylinder pressure signal have been considered. Moreover, knock intensity has been evaluated by means of two common indexes. High speed imaging has been carried out in the combustion chamber of a high performance DISI engine provided with an optical window in…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

How to Improve SI Engine Performances by Means of Supercritical Water Injection

University of Basilicata – Potenza 85100-Antonio Cantiani, Annarita Viggiano, Vinicio Magi
Published 2019-10-07 by SAE International in United States
The efficiency of ICEs is strongly affected by exhaust gases and engine cooling system heat losses, which account for about 50% of the heat released by combustion. A promising approach is to transfer this exhaust heat to a fluid, like water, and inject it into the combustion chamber under supercritical conditions. In such a way, the recovered energy is partially converted into mechanical work, improving both engine efficiency and performance.A quasi-dimensional model has been implemented to simulate an SI engine with supercritical water injection. Specifically, a spark ignition ICE, four-stroke with Port Fuel Injection (PFI) has been considered. The model accounts for gas species properties, includes valves opening/closing, wall heat transfer, a water injection model and a combustion model. The influence of some injection parameters, i.e. Water/Fuel ratio (W/F), Start Of water Injection (SOI) and Water Injection Duration (WID), on engine performances and efficiency is discussed in details.The results show that an increase of W/F ratio has the strongest impact on the performances with respect to SOI and WID, i.e. higher W/F ratio, SOI closer…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Advanced Exergy Analysis of an Air Craft Gas Turbine Engine at Different Power Loading Operations

GIFT, Bhubaneshwar-Alok Kumar Mohapatra
VIT Universtity Vellore-Tapano Hotta
Published 2019-09-16 by SAE International in United States
The innovations in aircraft propulsion have been identified as the key parameter towards the progress in transportation. Continuous advancement in the performance and efficiency of propulsion has enabled aircraft to travel over larger distances with higher speed. Aviation is also responsible for approximately 2% of total greenhouse gas emission and is expected to grow around 3% by 2050. The present article aims to use the exergetic analysis of a turboprop engine which should be helpful in designing of such engines and also helps these engine users to regulate and select the operation modes. A gas turbine with film air cooling of turbine blades has been proposed to be the turboprop engine. The engine is analyzed on exergy point of view at different power loading operation modes and the performance is studied. Selected exergetic measures under consideration are Exergy Efficiency, Fuel Exergy Depletion Ratio, Relative Exergy Consumption Ratio, Exergetic Improvement potential and Productivity Lack ratio. The total fuel exergy depletion ratio of the turboprop engine is estimated to be around 64.7 % at 100% loading. Also,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

Magneti Marelli SpA - Powertrain-Federico Stola, Matteo De Cesare
University of Bologna-Vittorio Ravaglioli, Giacomo Silvagni, Fabrizio Ponti
Published 2019-09-09 by SAE International in United States
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency.In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine. The engine under investigation has been modified to guarantee a stable engine operation over its whole operating range, that is achieved controlling boost pressure and temperature, together with the design of the injection pattern.Experimental tests have been performed to highlight the impact of several control variables on the…
This content contains downloadable datasets
Annotation ability available