Your Selections

Cold weather
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Snowmobii 2.0 (Snow mobility Unmanned Vehicle)

Harshil Patel
  • Technical Paper
  • 2019-28-2516
To be published on 2019-11-21 by SAE International in United States
In this paper we propose the snow mobility vehicle in order increase the mobility and decrease the risk of accidents for carry food and medicines on snow bounded areas using unmanned tracked vehicle called as snowmobii 2.0. Our unmanned tracked vehicle can transport Food/medicines as well as Defence in snow bounded areas. This unmanned robot can run in loose as well as hard snow due to it have specific featured technology in base wheel(track wheel system) such as hub with outer seals that improve its durability. The proposed snow mobility vehicle is consist of many sophisticated-designed systems such as navigation system, obstacle detection system, communication system, temperature sensing system. Snowmobii 2.0 is easy to get command and enable significant reduction in losses of many solder’s precious lives due to unavailability of food and medicines at that place. An unmanned tracked vehicle (snowmobii 2.0) is actively being developed for military use to perform various task like mobility on snow surface, carry food/medicines, defence etc.Predominantly this vehicle is used to replace human movement at hazardous place. It…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Simulation Study on Driving Range at High and Low Temperature

Catarc-Jiang Yu, YanXin Nie, Ning Xie, BaoTong Ma, Zhe Xu
Cooperator-Dong MingJun
Published 2019-11-04 by SAE International in United States
With the popularity of EVs, driving range has become one of the focuses of people's concern. The anxiety about driving range was particularly evident in winter and summer, because of the use of air conditioning at high temperatures and heating at low temperatures, as well as the power supply capacity of power batteries at different temperatures. At the same time, the energy consumption of thermal management components and the influence of thermal management on the efficiency of other components also need to be considered. The high and low temperature driving range is studied by means of simulation, which has the characteristics of low cost and fast speed. For the vehicles simulated in the article, driving range at 25 °C is 240 km, at -30 °C reduced to 34% (81.9 km), at 40 °C reduced to 73% (176 km).In this paper, the simulation modeling and analysis on the driving range of an EV are carried out. The simulation model includes air conditioning system and crew cabin, power battery system and its cooling system, motor system and…
This content contains downloadable datasets
Annotation ability available

SnowMicroPenetrometer Applications for Winter Vehicle Mobility

  • Magazine Article
  • TBMG-35361
Published 2019-10-01 by Tech Briefs Media Group in United States

The U.S. Engineer Research and Development Center (ERDC) Military Engineering Program on Remote Assessment of Infrastructure for Ensured Maneuver (RAFTER) Boreal Aspects of Ensured Maneuver (BAEM) identifies the need for modeling over-snow vehicle performance, as many factors related to vehicle setup and land surface condition contribute to vehicle efficiency. Accurately estimating snow macromechanical characteristics—such as elastic modulus, stiffness, and strength—is critical for understanding how effectively a vehicle will travel over snow-covered terrain.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

SnowMicroPenetrometer Applications for Winter Vehicle Mobility

Aerospace & Defense Technology: October 2019

  • Magazine Article
  • 19AERP10_10
Published 2019-10-01 by SAE International in United States

Characterizing the mechanical properties of snow and their impact on vehicle performance could improve vehicle winter mobility modeling.

The U.S. Engineer Research and Development Center (ERDC) Military Engineering Program on Remote Assessment of Infrastructure for Ensured Maneuver (RAFTER) Boreal Aspects of Ensured Maneuver (BAEM) identifies the need for modeling over-snow vehicle performance, as many factors related to vehicle setup and land surface condition contribute to vehicle efficiency. Accurately estimating snow macromechanical characteristics-such as elastic modulus, stiffness, and strength-is critical for understanding how effectively a vehicle will travel over snow-covered terrain.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Passenger Vehicle Windshield Demisting and Defrosting Systems

Interior Climate Control Vehicle OEM Committee
  • Ground Vehicle Standard
  • J902_201909
  • Current
Published 2019-09-25 by SAE International in United States
This SAE Recommend Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less, as defined by EPA, and M1 category vehicles as defined by the European Commission:
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

Rolls-Royce Plc-Geoffrey Jones, Benjamin Collier
University of Oxford-Alexander Bucknell, Matthew McGilvray, David Gillespie
Published 2019-06-10 by SAE International in United States
Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate. In this paper, a new thermodynamic model for ice crystal accretion is developed through adaptation of the Extended Messinger Model (EMM) from supercooled water conditions to mixed phase conditions (ice crystal and supercooled water). A novel three-layer accretion structure is proposed and the underlying equations described. The EMM improves upon the original model for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical and Experimental Investigation of Ice Adhesion Using the Blister Test

Iowa State University-Christopher Giuffre, Bishoy Dawood, Denizhan Yavas, Ashraf Bastawros
Published 2019-06-10 by SAE International in United States
Structures in cold weather environments are susceptible to atmospheric ice formation. A fracture mechanics based approach is proposed for in situ characterization of the interfacial fracture energy of ice on different substrates. This paper summarizes the development of the experimental and analytical framework to measure the ice adhesion energy, calibrated on static ice. The testing configuration utilizes a shaft-loaded blister test to produce stable crack propagation, from a well-defined pre-crack at the interface of the ice layer and the substrate. Measurements of the fracture energy are taken over a range of ice thicknesses and surface roughnesses. The developed analytical framework to estimate adhesion energy are verified and calibrated via finite element numerical simulation of the proposed geometric configuration and employing cohesive surfaces along the interface to simulate the crack nucleation and propagation process. Several different phenomena were observed include the transition from adhesive to cohesive fracture. The measured interfacial adhesion energy was almost independent of the surface roughness in the range of examined roughness. The measured interfacial R-curve showed a steady state plateau for range…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Parametric Study on the Thermodynamic Characteristics of DBD Plasma Actuation and Its Potential for Wind Turbine Icing Mitigation

Iowa State University-Cem Kolbakir, Linyue Gao, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Wind turbine icing represents the most significant threat to the integrity of wind turbines in cold weather. Ice formation on wind turbine blades was found to cause significant aerodynamic performance degradation, resulting in a substantial drop in energy production. Recently developed Dielectric barrier discharge (DBD) plasma-based anti-/de-icing systems showed very promising effects for aircraft icing mitigation. In this present study, DBD plasma-based anti-/de-icing systems were employed for wind turbine icing mitigation. First, a comprehensive parametric study is conducted to investigate the effects of various DBD plasma actuation parameters on its thermodynamic characteristics. An infrared (IR) thermal imaging system is used to quantitatively measure the temperature distributions over the test plate under various test conditions. DBD plasma actuators are embedded over the surface of a DU91-W2-250 wind turbine blade model, and a series of experiments were conducted by using the Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT) to evaluate the anti-/de-icing performance of the system for wind turbine icing mitigation. Dynamic anti-icing process was recorded by a high-speed imaging system, and an IR…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Runway Deicing Product Anti/Deicing Performance Assessment: Review and Future Directions

UQAC - AMIL-Jean-Denis Brassard, Caroline Laforte, Marc Mario Tremblay, Christophe Volat
Published 2019-06-10 by SAE International in United States
Every winter, northern airport operations are disrupted by heavy snowstorms and freezing precipitations. A simple snow accumulation or a thin layer of ice can affect aircraft operations (take-off, landing and taxi), and increase the risk for passengers and crew members, by rendering the runway slippery. Any deficits in deicing operations can also lead to flight delays and even cancellations that cost a lot to the industry. In order to maintain the runway and taxiway in a safe and useable condition, airport authorities use mechanical tools, but also chemical products. Chemical products available on the market for use in airports are principally in solid forms and liquid form, and are denominated as Runway Deicing Product (RDP). All of the products used in airport should meet the technical requirements of one of the two Aerospace Materials Specifications (AMS) documents: the AMS1431D Compound, Solid Runway and taxiway Deicing/Anti-icing and the AMS1435C Fluid, Generic, Deicing/Anti-icing Runways and Taxiways. Most of the products are used as freezing point depressants and are applied on snow, ice or packed snow covers to…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterization of Mode-II Interfacial Fracture Toughness of Ice/Metal Interfaces

Iowa State University-Denizhan Yavas, Ashraf Bastawros, Bishoy Dawood, Christopher Giuffre
Published 2019-06-10 by SAE International in United States
Airborne, marine and ground structures are vulnerable to atmospheric icing in cold weather operation conditions. Most of the ice adhesion-related work have focused on the mechanical ice removal strategies because of practical considerations, while limited literature is available for fundamental understanding of the ice adhesion process. Here, we present a fracture mechanics-based approach to characterize interfacial fracture parameters for the shear behavior of a typical ice/aluminum interface. An experimental framework employing two complementary tests (1) lap shear and (2) shear push-out tests was introduced to assess the mode-II fracture parameters for the selected aluminum/ice interface. Both analytical (shear-lag analysis) and numerical (finite element analysis incorporating cohesive zone method) models were used to evaluate shear fracture parameters. The combined experimental and numerical results, as well as surveying published results for lap shear and 0° cone tests showed that mode-II interfacial strength and toughness can be significantly affected by the method of testing geometry due to geometrically induced interfacial residual stress. As a result, the apparent toughness (or strength) obtained by 0° cone test could reach an…
Annotation ability available