Your Selections

Catalytic converters
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
To be published on 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to effectively store the zeolite and it is attached to the exhaust port of the engine. The selected engine…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Automobile Exhaust Emmision Control- A review

Manav Rachna International University-Sunny Bhatia
  • Technical Paper
  • 2019-28-2382
To be published on 2019-11-21 by SAE International in United States
Since the 20th century increase in the number of cars in the major cities is been a point of concern because of the toxic gasses being emitted from the engine of an automobile. These gasses are polluting the atmosphere and degrading the air to breathe. The main gasses responsible for the degradation of air quality are carbon monoxide, hydrocarbon and oxides of nitrogen. There is a necessity to find ways to reduce the pollution emitted into the atmosphere from the automobile. The source of emission is either evaporation from fuel tank or carburetor which is easy to be dealt with or harmful gasses due to improper combustion which is a concern for the environment. The two ways to reduce these emissions are, modification in the engine to minimize the production of harmful gases and to treat the harmful gasses emitted from the engine before blowing it into the atmosphere from the exhaust. Catalysts help to break harmful gasses into smaller compounds that are environment-friendly. The catalysts used are Rhodium Palladium and platinum, these make a…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design, Development and Analysis of Mullite Catalytic Converter for CI Engines

Kongu Engineering College-Selvakumar Pandiaraj, Dhamotharan Subbaiyan, Tamilvanan Ayyasamy, Sathishkumar Nagarajan
  • Technical Paper
  • 2019-28-0017
To be published on 2019-10-11 by SAE International in United States
Emissions of Hydrocarbon (HC), Carbon Monoxide (CO) and Oxides of Nitrogen (NOx) are the largest concerns for fossil fuel driven automotive vehicles. Catalytic converter is an important component in the selective catalytic reduction process. It oxidizes harmful CO and HC emission to CO2 and H2O in the exhaust system and thus the emission is controlled. Different kinds of problems are associated with noble metal based catalytic converter. A catalytic converter with a new catalyst for compression ignition engine is considered in this study. The catalytic converter is designed and developed with a new catalyst. Due to better durable characteristics and poison resistant nature, non-noble metal based material limestone (mullite) is selected as a catalyst for catalytic convertor and the emission characteristics are studied on four stroke single cylinder CI engine by using mullite based catalytic converter. The results are compared without catalytic converter in the same engine. In the design stage, the back pressure analysis is performed on perforated mullite plate with ANSYS software. After arriving satisfactory results, the design is taken for development. The…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental and Numerical Prediction of the Pressure Drop Reduction of Catalytic Converter under Various Mass Flow Rate of Exhaust Gas for a Naturally Aspirated Diesel Engine

Prince Shri Venkateshwara Engg. College-Edison Rajasingh
SRM Institute of Science and Technology-Sundararaj Senthilkumar
  • Technical Paper
  • 2019-28-0030
To be published on 2019-10-11 by SAE International in United States
Nowadays, Diesel emission control strategies are stringent across the globe which caused the rise in need of diesel after treat treatment devices that are more reliable and efficient. The optimized design of the catalytic converter aids in the durability of the product as well as the improvement in efficient operation of the Indian driving cycle. By changing the convergent and divergent cone angles of the catalytic converter, the consequential decrease in pressure drop leads to efficient flow of exhaust gases.The purpose of this study is to design, test, and analyse the catalytic converter in order to reduce the pressure drop in the exhaust system of a naturally aspirated diesel engine using both experimental and CFD techniques. In this study, a Diesel Oxidation Catalyst Catalytic Converter is investigated. For numerical analysis, ANSYS Fluent is used. Validation is done on baseline Catalytic converter pressure drop results obtained both numerically and experimentally for various speeds conditions and it is found that a reasonably good agreement exists. From the analytical calculations, Catalytic converter diameter, length and Cone angle are…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of TWC Characteristics in a Euro6 Gasoline Light Duty Vehicle

Aristotle University Thessaloniki-Grigorios Koltsakis
Empa-Viola Papetti, Panayotis Dimopoulos Eggenschwiler
Published 2019-09-09 by SAE International in United States
A Euro6 gasoline light duty vehicle has been tested at the engine dynamometer and the emissions have been analyzed upstream and downstream the Three-Way-Catalyst (TWC) during a WLTC cycle. Catalyst simulations have been used for assessing the processes inside the catalytic converter using a reaction scheme based on 19 brutto reactions (direct oxidation and reduction, selective catalytic reductions with CO, C3H6 and H2, steam reforming, water-gas shift and bulk ceria as well as surface ceria reactions). The reactions have been parameterized in order to best approximate the measurements.Based on the reactions taken into account, the real vehicle emissions can be predicted with good accuracy. The simulations show that the cycle emissions comprise mainly the cold start contribution as well as discrete emission break-through events during transients. During cold start no reactions are evident in the catalyst before the temperature of the gas entering the catalyst reaches 270°C. Following the light-off, prevailing reactions are direct oxidation as well as surface ceria reactions for CO and THC. NO reduction during cold start is due to reaction with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

FPT Industrial SpA-Stefano Golini, Francesco Giovanni Rutigliano
Istituto Motori CNR-Carlo Beatrice, Valentina Fraioli
Published 2019-09-09 by SAE International in United States
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR).A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.A surface reactions kinetic mechanism, representing CH4, CO, H2 oxidation and NO reduction, has been appropriately calibrated in steady-state operation, using a step-by-step procedure all over the engine operating conditions at different AFRs. Then transient conditions were numerically reproduced, through cyclical and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

University of Rome Niccolò Cusano-Giovanni Di Ilio
University of Rome Tor Vergata-Vesselin Krastev, Gino Bella, Giacomo Falcucci
  • Technical Paper
  • 2019-24-0048
Published 2019-09-09 by SAE International in United States
In this paper, we deploy a novel, multidimensional approach to simulate SCR reactors across physical scales. For the first time, a full 3D Lattice Boltzmann (LB) solver is developed, able to accurately capture the fluid dynamic phenomena taking place inside SCR reactors, as well as the catalytic conversion of NOx. The influence of engine load on exhaust gas mass flow rate and catalytic converter activity is taken into account. The proposed approach is computationally light and the results prove the reliability and versatility of the LB Method for the simulation of the complex phenomena that take place inside the after-treatment devices.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Powertrain Calibration Techniques

AVL LIST GmbH-Ernst Winklhofer, Alois Hirsch, Harald Philipp, Michael Trifterer, Manuel Berglez
Published 2019-09-09 by SAE International in United States
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE).ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter.As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.The paper reports on a methodology to measure and evaluate the ICE and EAS response to the vehicle drive requirements and the power shift dynamics between E-motor and ICE.Focus in particular is given to1particle emissions peaks at each engine start and torque variation with measurement of in-cylinder soot formation…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Heat Transfer Analysis of Catalytic Converters during Cold Starts

Aristotle University Thessaloniki-Grigorios Koltsakis
Empa-Viola Papetti, Panayotis Dimopoulos Eggenschwiler
Published 2019-09-09 by SAE International in United States
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced. Using this suitably modified coordinates, for the case of negligible axial solid conduction, computed solid temperature at the reactor outlet lay on a typical S-curve, allowing the introduction of an analytical function. A series of variations in the inlet exhaust temperature and mass…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Development of a NOx Reduction System during the Fuel Cut Period for Gasoline Vehicles

Heesung Catalysts-Jinwoo Song, Jun Lee
Hyundai Motor Company-Muyoung Choi, Eunsang Lee, Sangjin Ma, Sangmin Lee, Jungmin Seo, Seungbeom Yoo
Published 2019-04-02 by SAE International in United States
Generally, vehicles do not need power during deceleration. Therefore, the fuel efficiency can be improved by stopping the fuel injection in this period. However, when the fuel cut is activated, NOx is emitted immediately after fuel cut. During the fuel cut period, a large amount of fresh air flows into the catalytic converter installed on a vehicle since there is no combustion. Thus, the catalytic materials are converted into an oxidizing atmosphere. As a result, NOx purification performance of the catalyst deteriorates, and eventually NOx is emitted when combustion restarts. The quantity of NOx in this period is relatively small. However, in case of increasing fuel cuts, emission problem could arise. Therefore, in order to meet the stringent regulation such as LEV III-SULEV20 or 30, the number of fuel cuts need to be limited. The problem is that this strategy leads to a disadvantage of fuel efficiency. In order to solve this problem, in this study, the principle and process of NOx during the fuel cut period was analyzed in detail and then a new…
This content contains downloadable datasets
Annotation ability available