Your Selections

Carbon dioxide
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Occupant Controlled Ventilation

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2461
To be published on 2019-11-21 by SAE International in United States
Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter. When CO2 levels go up, fresh air is added until the CO2 levels…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental investigations on CO2 recovery from petrol engine exhaust using adsorption technology

ARC,SMEC,Vellore Institute of Technology-Saravanan S, Chidambaram Ramesh Kumar
  • Technical Paper
  • 2019-28-2577
To be published on 2019-11-21 by SAE International in United States
Energy policy reviews state that automobiles contribute 25% of the total Carbon-di-oxide (CO2) emission. The current trend in emission control techniques of automobile exhaust is to reduce CO2 emission. We know that CO2 is a greenhouse gas and it leads to global warming. Conversion of CO2 into carbon and oxygen is a difficult and energy consuming process when compared to the catalytic action of catalytic converters on CO, HC and NOX. The best way to reduce it is to capture it from the source, store it and use it for industry applications. To physically capture the CO2 from the engine exhaust, adsorbents like molecular sieves are utilized. When compared to other methods of CO2 separation, adsorption technique consumes less energy and the sieves can be regenerated, reused and recycled once it is completely saturated. In this research work, zeolite X13 was chosen as a molecular sieve to adsorb CO2 from the exhaust. A chamber was designed to effectively store the zeolite and it is attached to the exhaust port of the engine. The selected engine…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Comparative Experimental Investigation of Thumba and Argemone oil Based Dual Fuel Blend in a Diesel Engine for its Performance and Emission Characteristics

Lovely Professional University-Sumit Kanchan
University of Kashmir-Shahid Qayoom
  • Technical Paper
  • 2019-28-2375
To be published on 2019-11-21 by SAE International in United States
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus Colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like ATB10 (5% Argemone, 5% Thumba and 90% Diesel), ATB20, ATB30 and ATB40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings. In this exertion, performance and emission parameters were evaluated. The performance parameters like brake thermal efficiency (BTE), indicated power, brake specific fuel consumption (BSFC), brake mean effective pressure, indicated mean effective pressure and indicated thermal efficiency were studied and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Replacing twin electric fan radiator with Single fan radiator

Engine Design & Testing-Tushar Warkhade
Tata Technologies, Ltd.-Aashish Bhargava, Gaurav Soni
  • Technical Paper
  • 2019-28-2381
To be published on 2019-11-21 by SAE International in United States
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce – Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction. Further Cooling system performance of engine is evaluated along with Fuel efficiency; results are compared with present configuration.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Future hybrid Vehicles with advanced 48V electrified drive train technology to reduce Co2 emission

Mercedes-Benz R&D India Pvt Ltd.-Chandrakant Palve, Pushkaraj Tilak
  • Technical Paper
  • 2019-28-2487
To be published on 2019-11-21 by SAE International in United States
Future hybrid vehicles with advanced 48V electrified drive train technology to reduce CO2 emission. Chandrakant Palve* Pushkaraj Tilak * * Mercedes-Benz Research & Development India Pvt. Ltd. Bangalore. India. Key Words: 48V, CO2, P3 Hybrid, Electrified powertrain, AMT, emission, shift comfort, motor Research and/or Engineering Questions/Objective Global automotive industry is putting effort in moving from conventional powertrain technology to hybrid & electric powertrains. This efforts plays a vital role to achieve cleaner environment, improved performance, reduced fossil-fuel dependency, low noise for meeting regulatory & customer requirements. Automotive industry is facing a challenge of meeting stringent CO2 emission targets of 95g & 175g per kilometer for passenger cars & light commercial vehicles respectively. 48V is an important stepping stone in this direction. By taking motivation from this strategic challenge, advanced 48V P3 electrified powertrain technology has been proposed. The objective of this research is a novel electrified powertrain which offers Dual Clutch Transmission (DCT) level of shift comfort in combine with CO2 benefit without additional cost and weight penalty. Methodology The present study describes a unique…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Prospects of Bio Diesel and blends as a fuel supplement for diesel engines.

Manav Rachna International University-Gurpreet Singh Matharou
  • Technical Paper
  • 2019-28-2393
To be published on 2019-11-21 by SAE International in United States
Biodiesel can supplement petroleum product as a "perfect vitality source". It can ensure nature by diminishing CO2, SO2, CO, HC emission to an extent. The carbon cycle of Biodiesel is dynamic through the photosynthesis procedure .Plants ingest CO2, or, in other words those released by the biodiesel ignition process. Utilizing biodiesel can all the more adequately lessen the outflow of CO2, secure the indigenous habitat and keep up the environmental equalization, contrasted with the utilization of petroleum product. This paper considers the issues and gives understanding on the utilization of bio diesel in existing passenger vehicles which runs on diesel as a fuel. Because of increment in use of non-renewable energy sources viz., petroleum products are on an exponential decline. Today we have an option of electric vehicle or fuel cell based vehicles but what about the existing infrastructures of Billions of vehicles plying on Indian road. Bio diesel as a fuel solves this issue. Biodiesel and its blends such as B20, B40 etc can be used as a supplement of diesel.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal Kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
To be published on 2019-11-21 by SAE International in United States
Design and Development of Constant speed diesel engine up to 20 bar BMEP with Inline FIS Remesan CB, Sanjay Aurora, Vasundhara V Arde, Vishal Kumar, Om Prakash Yadav, Piyush Ranjan Eicher Engines (A unit of TAFE Motors & Tractors Ltd.) Abstract Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust inline Fuel Injection System. This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

High rigidity and light weight bumper material development in India

Honda Cars India Limited-Manu Sharma
  • Technical Paper
  • 2019-28-2553
To be published on 2019-11-21 by SAE International in United States
Vehicle weight reduction becomes important at the view point of fuel efficiency improvement and CO2 reduction in India also as well as developed countries. With this background, High tensile and Super high tensile steel application has become increasing. Similary, weight reduction of big plastic parts like bumper face is one of the most important items, so Honda has developed Thin-wall and light weight bumper face. In the development of light weight bumper, rigidity, impact strength and flowability which are main requirement are cotradictory property. It is necessary to develop new material to achieve this technical concern. Moreover, we verified part shape and thickness optimization to achieve part requirement. Established high property material and part manufacturing technology were applied for current CITY firstly, and it has been expanded to other models sequentially to contribute weight reduction for Honda vehicles. In this report, we report the analysis and verification result example of high rigidity and light weight bumper material development in India.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Approach for CO2 Reduction in India’s Automotive Sector

Maruti Suzuki India, Ltd.-Gaurab Bhowmick, Tapan Sahoo, Anoop Bhat, Gaurav Mathur, Deepak Gambhir
  • Technical Paper
  • 2019-28-2388
To be published on 2019-11-21 by SAE International in United States
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%. India contributed ~11% of transport emissions in Asia in 2016. This necessitates systematic approach and action plans to curb India’s vehicular…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of the Impact of the WLTP Procedure on CO2 Emissions of Passenger Cars

European Commission Joint Research-Biagio Ciuffo, Georgios Fontaras
Politecnico di Torino-Giuseppe DiPierro, Federico Millo, Claudio Cubito
Published 2019-10-07 by SAE International in United States
Until 2017 in Europe the Type Approval (TA) procedure for light duty vehicles for the determination of pollutant emissions and fuel consumption was based on the New European Driving Cycle (NEDC), a test cycle performed on a chassis dynamometer. However several studies highlighted significant discrepancies in terms of CO2 emissions between the TA test and the real world, due to the limited representativeness of the test procedure. Therefore, the European authorities decided to introduce a new, up-to date, test procedure capable to closer represent real world driving conditions, called Worldwide Harmonized Light Vehicles Test Procedure (WLTP). This work aims to analyze the effects of the new WLTP on vehicle CO2 emissions through both experimental and simulation investigations on two different Euro 5 vehicles, a petrol and a diesel car, representatives of average European passenger cars. The study also considers the effect of the engine warm-up and the impact of the start-stop technology in this new TA scenario. Since the WLTP imposes higher test mass and Road Loads (RLs), as well as higher driving cycle dynamics,…
This content contains downloadable datasets
Annotation ability available