Your Selections

Carbon dioxide
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

How well can mPEMS measure gas phase motor vehicle exhaust emissions?

Ford Motor Company-Diep Vu, Joseph Szente, Michael Loos, Matti Maricq
  • Technical Paper
  • 2020-01-0369
To be published on 2020-04-14 by SAE International in United States
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact spectroscopic detectors for their small size and low cost. The present work evaluates this approach by comparing measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS measurements. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement. The evaluations include two vehicle types, gasoline direct injection and diesel, and employ the US EPA and Worldwide Harmonized Light duty drive cycles. The results show that two classes of electrochemical NOx sensors are capable of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluating the Performance of a Conventional and Hybrid Bus operating on Diesel and B20 Fuel for Emissions and Fuel Economy

US Environmental Protection Agency-Matthew Brusstar, Scott Ludlam
University of Michigan-Rinav Pillai, Andre Boehman
  • Technical Paper
  • 2020-01-1351
To be published on 2020-04-14 by SAE International in United States
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric buses are considered as a potential solution as they are perceived to be less polluting and more fuel-efficient than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL), the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 80,000 lbs) may be evaluated under controlled conditions in the heavy-duty chassis dynamometer test. The present study evaluated the performance of a conventional bus and hybrid bus for emissions and fuel economy under representative test cycles (including cold start and hot start conditions) with Diesel (#2) and Biodiesel (B20) fuel. The conventional bus was equipped with a Cummins ISL 8.3L engine and a Diesel Particulate Filter (DPF) and Diesel Oxidation Catalyst…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of fuel octane quality on various advanced vehicle technologies

Shell Global Solutions (Deutschland)-Caroline Magdalene Zinser, Patrick Haenel
Shell Global Solutions (UK)-Alastair Smith
  • Technical Paper
  • 2020-01-0619
To be published on 2020-04-14 by SAE International in United States
Fuel with higher octane content is playing a key role in optimising engine performance by allowing a more optimal spark timing which leads to increased engine efficiency and lower CO2 emissions. In a previous study the impact of octane was investigated with a vehicle fleet of 20 vehicles using market representative fuels, varying from RON 91 to 100. The resulting data showed a clear performance and acceleration benefit when higher RON fuel was used. In this follow-up study 10 more vehicles were added to the database. The vehicle fleet was extended to be more representative of Asian markets, thus broadening the geographical relevance of the database, as well as adding vehicles with newer technologies such as boosted down-sized direct injection engines, or higher compression ratio engines. Eight different fuel combinations varying in RON were tested, representing standard gasoline and premium gasoline in different markets around the world. The new results augment our previously published octane study and result in a vehicle fleet dataset comprising 30 cars from 18 different automotive manufactures. Two key metrics were…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

University of Illinois at Urbana-Champaign-Wenying Zhang, Predrag Hrnjak
  • Technical Paper
  • 2020-01-0153
To be published on 2020-04-14 by SAE International in United States
Carbon dioxide (R744) is one of the most promising next-generation refrigerants for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. In this paper, a simulation model of an integrated internal heat exchanger (IHX) and accumulator (ACC) was developed using the finite volume method via EES. The results were validated by experimental results from a transcritical R744 mobile heat pump, and the error was within ±5%. The impacts of mass flow rate, evaporator outlet quality and temperatures of high- and low-side streams on the heat transfer rate, effectiveness and charge of the integrated IHX/Acc were studied. Results show that the heat transfer rate of the IHX is mostly sensitive to the evaporator outlet quality. When the evaporator quality decreases from 0.9 to 0.6, the heat transfer rate increases from 1.1 to 2.4 kW and the superheat reduces from 25.8 to 9.4 ℃. As a result, the compressor discharge temperature and the heating capacity can be reduced. To obtain the maximized capacity, especially during the startup, an…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Control System for Maintaining Passenger Cabin Air Quality

Chulalongkorn University-Thanin Wangsawangkul, Thiti Maneepipat, Nattapong Sukumdhanakul, Porpin Pungetmongkol, Prabhath De Silva
DENSO International Thailand-Pradit Mahasaksiri
  • Technical Paper
  • 2020-01-1243
To be published on 2020-04-14 by SAE International in United States
This paper presents a control methodology to maintain vehicle cabin air quality within desirable levels, giving particular attention to gaseous contaminants carbon dioxide (CO2) and carbon monoxide (CO). The CO2 is generated by the occupant exhalation while the CO is assumed to be ingested with the incoming fresh air. The system is able to detect and improve cabin air quality by controlling the recirculation flap of the ventilation system to control the amount of fresh air intake. The methodology is demonstrated in the laboratory using controlled experiments with a production level automotive HVAC (Heating Ventilating and Air-Conditioning) module. The results indicated that the designed control system can work automatically and control the CO and CO2 gas concentrations within acceptable levels.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simplified Approach to Model a HEV/PHEV/Battery Vehicle Cooling System in 1D and validating using DFSS methodology

Detroit Engineered Products (DEP), Inc.-Toukir Islam
FCA Engineering India Pvt,, Ltd.-Tharunnarayanan Arthanari, Amit Kumar, Vaibhav Patil, Dhananjay Autade, Kamalakannan J
  • Technical Paper
  • 2020-01-1386
To be published on 2020-04-14 by SAE International in United States
ABSTRACT Improving fuel economy and to satisfy more restrictive emission legislation the Vehicle electrification becomes more important one. Compared to the combustion engine a Hybrid electric vehicles / Plug-in hybrid electric vehicles will use energy from the grid to recharge their high voltage battery and this is converted with much higher efficiency, and less CO2 emission so they will have a significant role in the present transition from conventional to electric vehicles. The addition of new components, such as power electronics, electric machine and high voltage battery, increases the maximum torque available and the energy stored on-board, but increases the weight as well. In addition, although they have really high efficiency, they produce a significant amount of heat that has to be removed. Another thermal management issue in PHEV and BEV is cabin heating, since the engine heat is not available. To guarantee system efficiency and reliability, a completely new thermal management layout has to be designed. The time and cost spent on a real time model of new cooling system will be more which…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

DAF Trucks NV-Bogdan Albrecht
Delphi Technologies-Tony Simpson
  • Technical Paper
  • 2020-01-0300
To be published on 2020-04-14 by SAE International in United States
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies. For the highest engine speed tested, ramped profiles attain these efficiency values at considerably lower NOx levels. Particulate matter emissions, on the other hand, are generally lower with the use of square profiles. Heat release analysis further reveals that ignition delays in ramped rate…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on thermal management strategy of the exhaust gas of diesel engines based on in-cylinder injection parameters

Tongji University-Piqiang Tan, Lishuang Duan, Erfeng Li, Zhiyuan Hu, Diming Lou
  • Technical Paper
  • 2020-01-0621
To be published on 2020-04-14 by SAE International in United States
Due to high thermal efficiency, reliability and durability, less fuel consumption, and less carbon dioxide (CO2) emission, diesel engines are widely used in both stationary and mobile applications. However, an inherent combustion mode of diesel engines results in harmful emissions like hydrocarbons (HC), carbon monoxide (CO) and particulate matter (PM), the emissions can cause substantial damage to the human health and environment, so there are strict emission regulations to limit the harmful emissions. Diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) are important exhaust gas aftertreatment devices to oxidizing the HC, CO and PM in order to meet the requirements of emission regulations. However, emission regulations become more stringent, the test procedure has been changed from New European Driving Cycle (NEDC) to Worldwide Harmonised Light Vehicle Test Procedure (WLTP), most of the test operating conditions in the WLTP are under medium and low engine loads, so the temperature of exhaust gas of diesel engines is relatively low during the whole WLTP cycle. For the exhaust gas aftertreatment system, especially for the regeneration process of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Use of Partial Recirculation to Limit Build-Up of Cabin Carbon Dioxide Concentrations to Safe Limits per ASHRAE Standard-62

Calsonic Kansei North America Inc.-Gursaran Mathur
  • Technical Paper
  • 2020-01-1245
To be published on 2020-04-14 by SAE International in United States
Carbon dioxide exhaled by occupants remains within the cabin during operation of HVAC unit in recirculation mode. The CO2 inhaled by the occupants goes into their blood stream that negatively affects occupant’s health. ASHRAE Standard-621 specifies the safe levels of carbon dioxide in conditioned space for humans. The CO2 concentration limit per ASHRAE is 700 ppm over ambient conditions on a continuous basis. ASHRAE Standard-62 has an additional requirement for maintaining good air quality within the ambient condition. Per this requirement, we need to introduce a min of 15 cfm/person in the conditioned space to maintain good air quality. Even though this requirement is primarily for elimination the body odors, the author has investigated if this airflow requirement is also sufficient to maintain cabin CO2 concentrations as stated above. The author2 has conducted experimental studies by conducting tests on a vehicle to see if ASHRAE’s additional requirements to maintain good air quality is also sufficient to maintain cabin CO2 concentrations below ASHRAE Standard-62. Detailed results will be presented in the paper. REFERENCES 1. ASHRAE/ANSI, Standard…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation Into Improved Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalysts and Surfactant

Southwest Research Institute-Ryan Hartley, Nolan Wright, Cary Henry
University of Texas-Zachary Tonzetich
  • Technical Paper
  • 2020-01-1316
To be published on 2020-04-14 by SAE International in United States
Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation SCR aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work is to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactants to the fluid. Physical mixtures of urea and varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 production were evaluated. It was found that addition of 2.0 mol % ATO to urea increased CO2 production by 821 % and NH3 production by 96 % at temperatures ≤ 215 °C, indicating significantly enhanced hydrolysis of HNCO. Conversely, is was demonstrated that addition of oxalic acid or TiO2 to urea exhibited little effect on NH3 and CO2 production, indicating…