Your Selections

Calibration
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electrification System Modeling with Machine/Deep Learning for Virtual Drive Quality Prediction

General Motors Technical Center India-Brijesh Borkar, John Bosco Maria Francis, Pankaj Arora
  • Technical Paper
  • 2019-28-2418
To be published on 2019-11-21 by SAE International in United States
A virtual 'model' is generally a mathematical surrogate of a physical system and when well correlated, serves as a basis for understanding the physical system in part or in entirety. Drive Quality defines a driver's 'experience' of a blend of controlled responses to an applied input. The 'experience' encompasses physical, biological and bio-chemical perception of vehicular motion by the human body. In the automotive domain, many physical modeling tools are used to model the sub-components and its integration at the system level. Physical Modeling requires high domain expertise and is not only time consuming but is also very 'compute-resource' intensive. In the path to achieving 'vDQP (Virtual Drive Quality Prediction)' goal, one of the requirements is to establish 'well-correlated' virtual environments of high fidelity with respect to standard test maneuvers. This helps in advancing many developmental activities from a Controls and Calibration aspect. Recently, machine/deep learning have proven to be very effective in pattern recognition, classification tasks and human-level control to model highly nonlinear real world systems. This paper investigates the effectiveness of deep learning…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Corrosion Test Master Establishment

Wheel Standards Committee
  • Ground Vehicle Standard
  • J2636_201910
  • Current
Published 2019-10-21 by SAE International in United States
This SAE lab recommended practice may be applied to corrosion test methods such as salt spray, filiform, Corrosion creep back, etc. This procedure is intended to permit corrosion testing to be assessed between Laboratories for correlation purposes.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

Mahindra Research Valley-Pranav Kumar Sinha, Anbarasu Muthusamy, Vagesh Shangar Ramani
Published 2019-10-11 by SAE International in United States
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise. Calibration was employed to meet the emission and noise targets of the points achieving effective noise - Soot trade off and HC- PM trade-off.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A New Parallel Hybrid Concept for Microcars: Propulsion System Design, Modeling and Control

ENEA-Fernando Ortenzi
Positech Consulting s.r.l.-Erminio Maria Ursitti
Published 2019-10-07 by SAE International in United States
Technological and commercial development of vehicles specifically conceived for urban use would certainly be a crucial aspect in making mobility sustainable in urban contexts thanks to their limited in size and low fuel consumption and emissions. Hybrid drive trains are particularly suited to this purpose: if properly designed, very small-sized thermal engines can give all the energy and power required for the application, also making pure electric driving possible when required. The authors are involved since a decade in proposing new low-cost solutions to address this market sector. Market itself explored these possibilities and nowadays offers some BEV solutions in this market share, but it is still lacking in proposing solutions for a parallel full hybrid drive. The main reason must be searched in the complexity of normally applied parallel-hybrid propulsion systems which is not compatible with the limited costs of the application.Taking the lead from these considerations, the authors here propose a simple concept for a parallel-hybrid kit for quadricycles called Hybrid Power Pack (HPP) which is now installed and under long-range testing on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Film Analysis Guides for Dynamic Studies of Test Subjects

Motor Vehicle Council
  • Ground Vehicle Standard
  • J138_201910
  • Current
Published 2019-10-02 by SAE International in United States

This SAE Recommended Practice is intended to provide guidelines for the identification of subjects used in dynamic tests. It establishes recommendations for location and description of target areas on test subjects or test devices, as well as recommendations for photographic calibration and timing.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analytical Model for Calibration Results Performances Enhancement, Resulting in Automated Prescription for Equipments

Airbus-Juan Manuel García Lasanta, Damian Mendez-Huelva
SAICA SL-Jose Enrique Garofano
Published 2019-09-16 by SAE International in United States
Most of the decisions taken every day are based on the results of measurements of all different events that occur around us. The reliability of these measurements depends basically on the environment in which they are carried out, the procedure defined and the equipment used, evaluating their different contributions through the uncertainty of measurement. In the case of the measuring equipment, the calibration process associated with adequate traceability provides part of the information necessary to contribute positively to the generation of reliability. However, the physical nature of the instruments means that all of them have a certain degree of drift in their metrological characteristics, which requires users to establish time intervals to confirm the maintenance of the goodness of measurement of such equipment. In this article, a methodological proposal for the processing of calibration data, which makes it possible to establish a systematic approach for the dynamic and flexible establishment of calibration intervals for measuring equipment in industrial environments, is introduced. Finally, the results of a practical experience with this methodology carried out in the…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A New Positioning Device Designed for Aircraft Automated Alignment System

Shanghai Jiao Tong University-Jie Huang, Long Yu, Yuhan Wang
Shanghai Top NC Tech Co Ltd-Yilian Zhang
Published 2019-09-16 by SAE International in United States
Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and positioners. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system will drive the pistons to move to the specified location. Meanwhile, the amount of compression of a set of springs has changed, so the steel balls are compelled to compress, contact or…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A New Co-Simulation Approach for Tolerance Analysis on Vehicle Propulsion Subsystem

GM Global Propulsion Systems-Claudio Mancuso, Domenico Cavaiuolo, Giuseppe Corbo
Gamma Technologies LLC-Iakovos Papadimitriou
Published 2019-09-09 by SAE International in United States
An increasing demand for reducing cost and time effort of the design process via improved CAE (Computer-Aided Engineer) tools and methods has characterized the automotive industry over the past two decades. One of the main challenges involves the effective simulation of a vehicle’s propulsion system dealing with different physical domains: several examples have been proposed in the literature mainly based on co-simulation approach which involves a specific tool for each propulsion system part modeling. Nevertheless, these solutions are not fully suitable and effective to perform statistical analysis including all physical parameters. In this respect, this paper presents the definition and implementation of a new simulation methodology applied to a propulsion subsystem. The reported approach is based on the usage of Synopsys SABER as dominant tool for co-simulation: models of electronic circuitry, electro-mechanical components and control algorithm are implemented in SABER to perform tolerance analysis; in addition, a dynamic link with engine plant model developed in GT-SUITE environment has been established via a dedicated procedure. Moreover, a HPC Grid (High Performance Computing Grid) is used with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

Corning GmbH-Dominik Rose, Thorsten Boger
FEV Europe GmbH-Christof Schernus, Michael Görgen, Jim Cox, Martin Nijs, Johannes Scharf
Published 2019-09-09 by SAE International in United States
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations. In the second part, a relevant share of ash deposits inside three-way catalysts (TWC) is depicted. In an experiment, the oxygen storage capacity (OSC) of a three-way catalyst was significantly lowered by ash, while a coated GPF showed little effects. A subsequent OSC regeneration…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Virtual Chassis Dyno for Diesel Engine Tuning and Calibration

RENAULT SAS-Damien Maroteaux
  • Technical Paper
  • 2019-24-0076
Published 2019-09-09 by SAE International in United States
Since WLTP introduction in Europe, Exhaust Emission standards are based also on real driving conditions. The tuning and calibration work for Engine-out Emissions and Exhaust After-treatment Systems must therefore include all driving conditions in real life use of the vehicle. This includes temperature conditions, altitude, vehicle load and driving style. Consequently, the workload, cost and duration for the engine and after treatment system calibration activities, based on physical tests as today, are no more compatible with realistic development targets. The purpose of the methodology described in this paper is to replace chassis dyno vehicle tests by Hardware in the Loop, using the Engine Electronic Control Unit as physical part. The vehicle, driver, engine, gearbox are all modeled by 0D/1D simulation running in real time. The methodology used to build the simulation models is described. A Design of Experiment Approach based mainly on steady state engine testing is used to build the engine-out emission model. A very extensive work has been done to validate the method, by comparing results from the model with vehicle chassis dyno…
This content contains downloadable datasets
Annotation ability available