The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

CAD, CAM, and CAE
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of the Compression Chamber and Optimization of the Sealing of a Novel Rotary Internal Combustion Engine using CFD

Aristotle University of Thessaloniki-Savvas S. Savvakis, Elias Nassiopoulos, Dimitrios Mertzis, Zissis Samaras
  • Technical Paper
  • 2020-37-0007
To be published on 2020-06-23 by SAE International in United States
The increasing demand for lower fuel consumption and pollutant emissions favours the development of novel engine configurations. In line with this demand, the present contribution aims to investigate the sealing performance of a new concept rotary split-engine with a very promising thermal efficiency, a very low NOx emissions' level, and a much higher power density than any conventional internal combustion engine can. It uses the Atkinson cycle, a low-temperature combustion process and when it uses two pistons, symmetrically positioned around its shaft, it gives one power stroke every 180 degrees. The main focus of this work is to provide all the steps followed so far in order to ensure an efficient sealing and operation of the compression process of this engine, including the 1D & CFD simulations, CAD design & optimisation, and experimental campaign for verifying the digital results. The so-far investigation and experiments conclude that this new rotary engine can work with no oil lubrication inside the compression chamber and with much lower mechanical losses compared to the existing reciprocating engines.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advance CAE Methods for NVH Development of High Speed Electric Axle

AVL LIST GmbH-Mehdi Mehrgou, Julian Pohn, Bernhard Graf, Christoph Priestner
AVL Software and Functions Gmbh-Mathias Deiml
  • Technical Paper
  • 2020-01-1501
To be published on 2020-06-03 by SAE International in United States
By developing more electric vehicles more and more focus are to the noise and vibration from Electric Drive unit. Here a high-speed E-axle for premium class vehicle is being developed up to 30,000 rpm, with high power density and lightweight design which introduce new challenges. Benchmarking of different E-axle and vehicles lead to targets which can be used at the begin of development as subsystem targets. This paper shows first how these targets like tonal noise can be simulated. Then the CAE method is used to optimize the source and structure to improve the NVH. Different aspects like torque ripple, electric whine, gears whine and mounting are discussed.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CAE Support to Vehicle Audio Installation Issues

Volvo Car Corporation-Andrzej Pietrzyk
  • Technical Paper
  • 2020-01-1575
To be published on 2020-06-03 by SAE International in United States
Audio CAE is an emerging area of interest for a vehicle OEM, despite the fact that the development of the audio system is often left to a specialized supplier. Especially the questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The long term goal is to enable performing subjective evaluation of sound in a virtual car, and integrating audio evaluation in the NVH simulator. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Bridging Technology to Combine Test and Simulation With In-Situ TPA

Head acoustics GmbH-Matthias Wegerhoff, Roland Sottek, Haiko Brücher
  • Technical Paper
  • 2020-01-1574
To be published on 2020-06-03 by SAE International in United States
To shorten development processes and to secure decisive product properties as early as possible, new methods are required for product development. These must be able to generate the maximum information about the future product out of the data available at the respective development step. Computer-aided engineering (CAE) is therefore becoming increasingly important. CAE makes it possible to predict product properties at an early development stage and to partly replace physical prototypes with numerical models (virtual prototypes). However, the transition from experiment-based methods to numerical approaches is a big step. Often, purely-numerical examinations are only possible to a limited extent because of the following reasons: complex modeling, missing data or input data with major uncertainties, lack of expertise, or development processes not suitable for numerical methods. Therefore, this paper addresses a "bridging technology" that combines the advantages of experiment-based and numerical methods and allows optimal evaluation of the properties of the product to be developed. For this purpose, an exciting subsystem with its structural dynamics is represented by Equivalent Forces (EF) determined based on measured accelerations…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

Audi Hungaria Zrt.-Antoine Guellec, Daniel Feszty
Hexagon | Free Field Technologies-Markus Brandstetter, Jonathan Jacqmot
  • Technical Paper
  • 2020-01-1549
To be published on 2020-06-03 by SAE International in United States
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches. In this paper, the vibro-acoustic frequency response of an existing MSC Nastran FE model is extended using the Actran Statistical Energy Analysis (SEA) approach, Virtual SEA. In Virtual SEA, the necessary…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance improvement of Rail AC assembly by using CAE and CFD analysis

Subros Limited-ANIT SEN, DIPANKAR BORA
Subros Ltd-Arunkumar Goel, SOMNATH SEN
  • Technical Paper
  • 2020-28-0027
To be published on 2020-04-30 by SAE International in United States
The aim of this paper is to analyze the Rail AC kit to meet the customer requirement. CFD analysis been carried out on the proposed design to find the airflow on condenser and blower side. Based on the analysis result, design modification been done to improve the air flow on condenser and evaporator side thereby improve the cooling capacity of the unit. CAE analysis been carried out to strengthen mount brackets. There is improvement on the modal frequency and stress result after the design modification. Based on the final modified design, proto is developed and tested and found OK which is verified with CAE/CFD result. CAE analysis been carried out using Abaqus software and CFD using star CCM+.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Computational analysis of spray pre-treatment in automotive applications

ESS Engineering Software Steyr-Muraleekrishnan Menon, Samiullah Baig, Kevin Verma
  • Technical Paper
  • 2020-01-0479
To be published on 2020-04-14 by SAE International in United States
The automotive coating industry consists of several processes targeting the reliability and longevity of the manufactured Body-In-White (BIW) with process optimization playing a key role. Pre-treatment of BIW is one of the important aspects and this involves processes in the paint shop and body-in-white shop. The relevance of cleaning every part of the BIW is well known in the industry, and we will focus on the spray wash processes. While the industry currently relies on experiences from previous designs and experimental observations from model studies, this drastically slows down process optimization for new car models. Recent developments in Computer Aided Engineering (CAE) industry has shown capability to perform reliable studies using computer models that speeds up processes. The current study focuses on the Computational Fluid Dynamic (CFD) evaluation of spray washing of a BIW using a meshless method known as Smoothed Particle Hydrodynamics (SPH). The study specifically discusses simulation of a washing process, where a car BIW is moving through pre-treatment line where, specifically arranged set of nozzles are spraying water at a constant flow…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CAE method Development for the Seat latch effort calculation in 2nd row Bench seats and optimization

Ford Motor Co., Ltd.-Ravi Purnoo Munuswamy
Ford Motor Co., Pvt., Ltd.-Arunachalam Muthupandian
  • Technical Paper
  • 2020-01-1103
To be published on 2020-04-14 by SAE International in United States
There are factors that can make installation of LATCH-equipped seats difficult or, in some cases, impossible. Customers are raising complaints on latching issues to automotive industry and in turn warranty issue cost more to the company. Therefore, automotive industries are spending lot of money on physical test and method development. At present, there is no such proven virtual test available for testing seat latch effort (passenger apply effort to do the latching). Since many industries concentrating more on developing new method using CAE approach for evaluate seat latching effort with less cost. So in this paper, authors are elaborating research on new method using CAE method LS dyna solver with Hypermesh preprocessor. Further deep dive on physical test data correlation with CAE method(virtual test) to verify the design verification efficiency. Also, from this test can able to estimate the effort easily and optimize seat latching performance.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Co-Simulation Platform for Powertrain Controls Development

Hyundai-Kia America Technical Center Inc.-Shihong Fan, Yong Sun, Jason Hoon Lee, Jinho Ha
  • Technical Paper
  • 2020-01-0265
To be published on 2020-04-14 by SAE International in United States
With the advancement of simulation software development, the efficiency of vehicle and powertrain controls research and development can be significantly improved. Traditionally, during the development of a new control algorithm, dyno or on-road testing is necessary to validate the algorithm. Physical testing is not only costly, but also time consuming. In this study, a virtual platform is developed to reduce the effort of testing. To improve the simulation accuracy, co-simulation of multiple software is suggested as each software specializes in certain area. The Platform includes Matlab Simulink, PTV Vissim, Tass Prescan and AVL Cruise. PTV Vissim is used to provide traffic environment to PreScan. PreScan is used for ego vehicle simulation and visualization. Traffic, signal and road network are synchronized in Vissim and PreScan. Powertrain system is simulated in Cruise. MATALB/Simulink serves as master of this co-simulation, and integrates the different software together. It also includes human driver model and a powertrain control function. An ADAS-ISG (Idle Stop and Go) powertrain control algorithm is implemented in Simulink and tested by using the platform under different…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Research on Kinematic Optimization of Auto Flush Door Handle System

Hyundai Motor Group-Jungho Han, Kyoungtaek Kwak, Jinwoo Nam, Oktae Jung, Jinsang Chung
  • Technical Paper
  • 2020-01-0623
To be published on 2020-04-14 by SAE International in United States
A fascinating exterior appearance is one of the most important values for customers so the realization of the innovative styling has been a major topic for car makers for several years. Also, since the base of autonomous driving and electric vehicle is being expanded recently, it is essential to not only create high-tech image on a vehicle but also realize the engineering design in reality. From that point of view, the auto flush handle can be unique sales point to enhance the degree of the completion of the exterior styling. The purpose of this study is to establish the kinematic system of auto flush door handle to overcome the exterior handicaps such as not only the excessive exposure of the internal area on the deployed position but also to determine the proper operating speed. In order to resolve these issues, the Scott-Russell mechanism is applied to the auto flush handle system. The mechanism is applied to realize the straight motion so exterior quality can be improved to minimize inner gap and prevent link exposure. In…