Your Selections

Business and general aviation aircraft
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Low Cost, Fireproof, and Light Aircraft Interior

Sardou Societe Anonyme-Max Sardou
  • Technical Paper
  • 2019-01-1857
To be published on 2019-09-16 by SAE International in United States
Low cost, fireproof, and light aircraft interior Fire is a dramatic issue in aircraft nowadays, especially with composite air crafts. An additional issue is the dangerous use of flammable Li-Ion batteries in a lot of appliances. we propose in order to avoid dramas to produce aircraft interiors, fire doors, cargo bay walls, as well than cargo container able to contain a fire inside them, with our ceramic composite called TOUGHCERAM ®. We have developed a low-cost, ceramic, damage tolerant, this ceramic is flexible between minus 100°C and plus 350°C. TOUGHCERAM ® poly-crystalize between 60°C and 110°C and can be reinforced with fibbers like carbon or basalt one. TOUGHCERAM ® survive 90 minutes to a propane 1900°C torches. TOUGHCERAM ® does not burn, nor smoke. In this paper we will explain how it is possible to develop a fully mineral ceramic offering such unique mechanical and fire properties.
 

The Szorenyi Three-Chamber Rotary Engine concept

Partner Rotary Engine Development Agency-Peter King
  • Technical Paper
  • 2019-24-0168
To be published on 2019-09-09 by SAE International in United States
Currently automotive engines are reciprocating or Wankel rotary engine types. Reciprocating engines are bulky, heavy and complex, mainly due to the intake and exhaust valves and their associated cam-­‐train. Wankel engines are rev limited due to the large eccentric load on the crankshaft, and have poor sealing of the apex seals leading to poor economy and undesirable emission gases. The Rotary Engine Development Agency (REDA) has designed a three­‐chamber rotary internal combustion engine concept using its patented Szorenyi Curve. It is an evolution of the four chamber engine design which was the subject of SAE Technical Paper 2017-­‐01-­‐2413 and SAE publication ‘So You Want to Design Engines: UAV Propulsion Systems’. This paper on the three­‐chamber engine concept includes an analysis of the major issues affecting the Wankel engine. The Wankel engine’s geometry results in excessive crankshaft deflection (due to the centrifugal force of the rotor which is eccentric to the crankshaft) and this limits its revs. However, the analysis in the paper reveals that the revs cannot be increased by increasing the diameter of the…
 

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

Airborne Technologies-Thomas Unger
Eologix Sensor Technology GmbH-Thomas Schlegl, Michael Moser
Published 2019-06-10 by SAE International in United States
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements. Prototype hardware setups have been designed and built for application on aircraft. In test flights carried out in Scotland in late 2017, the functionality of the system could be demonstrated. It could…
Datasets icon
Annotation icon
 

Composite Fuel Tanks, Fuel System Design Considerations

AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
  • Aerospace Standard
  • AIR5774
  • Current
Published 2019-05-16 by SAE International in United States
This SAE Aerospace Information Report (AIR) is a compilation of engineering references and data useful to the technical community that can be used to ensure fuel system compatibility with composite structure. This AIR is not a complete detailed design guide and is not intended to satisfy all potential fuel system applications. Extensive research, design, and development are required for each individual application.
Datasets icon
Annotation icon
 

Materials and Process Modeling of Aerospace Composites

Charles Lu
  • Progress In Technology (PT)
  • PT-202
Published 2019-04-30 by SAE International in United States
Since the successful production of carbon fibers in early 1960s, composite materials have emerged as the materials of choice for general aviation aircraft, military aircraft, space launch vehicles, and unmanned air vehicles. This has revolutionized the aerospace industry due to their excellent mechanical and physical properties, as well as weight-reducing ability. The next- generation material development model should operate in an integrated computational environment, where new material development, manufacturability, and product design practice are seamlessly interconnected. Materials and Process Modeling of Aerospace Composites reports recent developments on materials and processes of aerospace composites by using computational modeling, covering the following aspects: • The historical uses of composites in aerospace industry, documenting in detail the early usage of composite materials on Premier I by Raytheon to recent full-scale applications of composites on large commercial aircraft by Boeing and Airbus. • An overview on the classifications of composites used in aerospace industry, ranging from conventional glass- fiber reinforced composites to advanced graphene nanocomposites. • The recent work on computational material engineering on aerospace composite materials, including fundamental…
Annotation icon
 

Aircraft Nosewheel Steering/Centering Systems

A-5B Gears, Struts and Couplings Committee
  • Aerospace Standard
  • AIR1752A
  • Current
Published 2019-04-17 by SAE International in United States
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
Datasets icon
Annotation icon
 

Design and Verification of Aircraft Nose Wheel Steering Systems

A-5B Gears, Struts and Couplings Committee
  • Aerospace Standard
  • ARP1595B
  • Current
Published 2019-04-17 by SAE International in United States
This document provides recommended practices for the design, development, and verification testing of NWS systems.
Datasets icon
Annotation icon
 

Aircraft Parachute Recovery Systems

  • Magazine Article
  • TBMG-33761
Published 2019-02-01 by Tech Briefs Media Group in United States

BRS Aerospace South St. Paul, MN 651-457-7491

 

Aircraft Lightning Zone

AE-2 Lightning Committee
  • Aerospace Standard
  • ARP5414B
  • Current
Published 2018-12-05 by SAE International in United States
This SAE Aerospace Recommended Practice (ARP) defines lightning strike zones and provides guidelines for locating them on particular aircraft, together with examples. The zone definitions and location guidelines described herein are applicable to Parts 23, 25, 27, and 29 aircraft. The zone location guidelines and examples are representative of in-flight lightning exposures.
Datasets icon
Annotation icon
 

Aircraft Cabin Illumination

A-20C Interior Lighting
  • Aerospace Standard
  • AIR512G
  • Current
Published 2018-11-05 by SAE International in United States
This document covers the general recommendations for cabin lighting in order to provide satisfactory illumination for, but not limited to, commercial transport aircraft: a Boarding and deplaning b Movement about the cabin c Reading d Use of lavatories e Use of work areas f Using stowage compartments, coat rooms, and closets g Using interior stairways and elevators (lifts) h Use of crew rest areas
Datasets icon
Annotation icon