Your Selections

Braking systems
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Impact of Vehicle Electrification on Brake Design

Maruti Suzuki India, Ltd.-Vipul Gupta
  • Technical Paper
  • 2019-28-2499
Published 2019-11-21 by SAE International in United States
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc. Extent of electrification defines in turn extent of recuperation possible, extent of increase in vehicle weight, availability of vacuum and NVH of powertrains. Extent of recuperation is constrained by motor generator…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Combi Brake System (CBS) Design and Tuning on an Electric Two Wheeler for Cornering Maneuver

Ather Energy-Lokesh Soni, Shivaram Venkateswaran
Xitadel CAE Technologies India Pvt Ltd.-Dhanraj Domala
  • Technical Paper
  • 2019-28-2399
Published 2019-11-21 by SAE International in United States
To reduce the number of traffic accidents, most of the governments have mandated to include Combi Brake System (CBS) or Anti-lock Braking System (ABS) in two wheelers. While most of the homologation requirements for CBS can be fulfilled by straight line motion, CBS behavior is crucial while cornering for safety aspects. When vehicle is in cornering motion, the lateral forces generated at the tire decreases the effective longitudinal force available, which implies lesser braking force at tire.This paper represents a design methodology for tuning CBS for various critical scenarios mainly during cornering maneuver. A detailed study has been made at various combination of vehicle lean angle, vehicle speed and friction coefficient of road (μ) in straight line and cornering maneuver to effectively decide on front to rear brake force distribution to avoid either of the tires’ lock-up. A co-simulation is done with BikeSim and Simulink softwares, where vehicle model is developed in BikeSim and CBS control algorithm in Simulink. Both the models are correlated against real test data.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A New Appraisal of the Thermomechanical Behaviour of a Hybrid Composite Brake Disc in a Formula Vehicle

Force Motors-Pradeep Chandrasakaran
Sri Krishna College of Engineering and Technology-Soundararajan Ranganathan, Sathishkumar Kuppuraj, Shanthosh Gopal
  • Technical Paper
  • 2019-28-2572
Published 2019-11-21 by SAE International in United States
The present work promotes a hybrid composite brake disc for thermal and structural analysis of a formula vehicle. In order to reduce the un-sprung weight without compromising the strength, hybrid composite materials were incorporated in the disc plates of the braking system. In the disk brake system, the disc is a major part of a device used for slowing or stopping the rotation of a wheel. Repetitive braking of the vehicle leads to heat generation during each braking condition. Based on the practical understanding the brake disc was remodeled with unique slotting patterns and grooves, using the selected aluminium alloy of (AA8081) with reinforcement particle of 15wt% Silicon carbide (SiC) and 3wt% Graphite (Gr) as a hybrid composite material for this proposed work. By varying slotting pattern and groove angles the transient thermal and structural analysis using ANSYS workbench on the hybrid composite disc plate of disk brake is done. The main purpose of this study is to analyse the thermomechanical behavior of composite brake disc for a formula vehicle under severe braking conditions. To…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

ELECTRIC BICYCLE WITH REGENERATIVE BRAKING SYSTEM

IIT Mandi-Aman Soni, Anshul Mehrotra, Ankit Joshi, Arpan Gupta, Narsa Tummuru
  • Technical Paper
  • 2019-28-2490
Published 2019-11-21 by SAE International in United States
One of the significant challenges in the present scenario is the depletion of fossil fuels. As the use of conventional fuel is increasing day by day, it will lead to the complete depletion of fossil fuel in the future. So, an alternate solution to this problem is the use of electric vehicles which is independent of the dependence on fossil fuels. Electric vehicles (EVs) use batteries to power them and are electric motor driven. One advantage of using these electric vehicles is that they are pollution free and smokeless. One of the critical limitations of these electric vehicles is the low driving range per charge. The main proposal of this paper is the implementation of a regenerative braking system (RBS) which helps in recovering the kinetic energy that gets wasted during braking. RBS will be very useful in hilly terrain areas where much potential energy can get recovered while moving down the hill. This potential energy while going downhill is mostly wasted in brakes to regulate the speed of the vehicle. The present paper demonstrates…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Regenerative Braking Cooperative Control of Hybrid Electric Vehicle Based on System Efficiency Optimization

Chongqing University-Yang Yang, Jing Chen, Chang Luo, Qingsong Tang
  • Technical Paper
  • 2019-01-5089
Published 2019-11-19 by SAE International in United States
In order to improve the performance of electro-hydraulic composite braking system of hybrid electric vehicle (HEV), a new type of plug-in HEV with dual motor was taken as the research object. The model of motor loss was built to achieve maximum motor efficiency, and the hydraulic braking system model, which can dynamically control pressure, was built. Based on the optimization of a motor’s continuously variable transmission (CVT) joint efficiency, the real-time optimal allocation strategy based on threshold method and cooperative control strategy of the electro-hydraulic composite braking system were brought out to recover most of the regenerative energy under the premise of ensuring safety. The model was built to verify the performance by AMESim-Simulink. The results show that the control strategy can take the advantages of dual-motor braking recovery system, increase braking energy recovery rate, effectively improve the braking safety and ride comfort of the vehicle, and reduce braking force fluctuation.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Conceptualization and Modeling of a Flywheel-Based Regenerative Braking System for a Commercial Electric Bus

SAE International Journal of Commercial Vehicles

Delhi Technological University, India-Kunal Mathur, Lalit Kumar Choudhary, Aditya Manoj Natu, Krovvidi Srinivas, Vikas Rastogi
  • Journal Article
  • 02-12-04-0018
Published 2019-11-19 by SAE International in United States
The following article illustrates the detailed study of the development of a unique flywheel-based regenerative braking system (f-RBS) for achieving regenerative braking in a commercial electric bus. The f-RBS is designed for installation in the front wheels of the bus. The particular data values for modeling the bus are taken from multiple legitimate sources to illustrate the development strategy of the regenerative braking system. Mechanical components used in this system have either been carefully designed and analyzed for avoiding fatigue failure or their market selection strategies are are explained. The positioning of the entire system is decided using MSC Adams View®, hence determining a suitable component placement strategy such that the f-RBS components do not interfere with the bus components. The entire system is modeled on MATLAB Simulink® with sufficient accuracy to get various results that would infer the performance of the system as a whole. The overall efficiency of the developed system in terms of battery consumption is also computed in this study.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Cooperative Distribution Strategy of Regenerative Braking and Pneumatic Braking of an Electric Commercial Vehicle

Nanjing University of Science and Technology-Qing Cheng, Dawei Pi, Boyuan Xie, Hongliang Wang, Xianhui Wang
Published 2019-11-04 by SAE International in United States
This paper mainly proposes one type control strategy of the regenerative braking system of an electric commercial vehicle under normal braking condition. With the main goal of recovering as much energy as possible, the braking force distribution strategy based on maximum regenerative braking optimization is studied under the restriction of ECE regulation and state of charge (SOC) of battery. Firstly, the related models of the regenerative braking system and the target vehicle are separately established in MATLAB/Simulink. Then, the distribution strategy of braking force is developed and optimized considering the influence of SOC and vehicle speed respectively. Finally, the braking effects of this control strategy in the typical deceleration process are numerical simulated and analyzed. Simulation results depict that this control strategy can recover more braking energy under the premise of ensuring braking safety and great braking performance compared with the common braking strategies with traditional strategy and without regenerative braking.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of Active Collision Avoidance Performance Based on Cooperative Regenerative Auxiliary Braking System

China Academy of Railway Sciences Corporation Limited-Zhongshi Zhang
Tsinghua University-Xiaohui Hou, Junzhi Zhang, Chengkun He
Published 2019-11-04 by SAE International in United States
Active collision avoidance can assist drivers to avoid longitudinal collision through active brake. Regenerative braking can improve the driving range and braking response speed. At this stage, conventional hydraulic braking system limits the implements of above technologies because of its poor performance of response speed and coordinated control. While the brake-by-wire system is a better actuator that can fulfill requirements of automotive electric and intelligent development due to its rapid response and flexible adjustment. However, the system control algorithm becomes more complicated with introduction of regenerative braking and active collision avoidance function, which is also the main problem solved in this paper. First, a new type of cooperative regenerative auxiliary braking system (CRABS) of intelligent electric vehicles, which integrates the functions of brake-by-wire, regenerative braking and active collision avoidance, is proposed, for purpose of analyzing the improvement of active collision avoidance performance after the introduction of regenerative braking. The design of the system focuses on the Electro Hydraulic Brake (EHB) unit, control strategy of active collision avoidance and brake force distribution. Then, modeling and simulation…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving

Hunan CRRC Times Electric Vehicle CO., LTD-Tian Zhu
Tongji University-Ke Song, Bin Wei, Zhen Song, Huan Chen
Published 2019-11-04 by SAE International in United States
Vehicles equipped with one or several functions of Advanced Driver Assistant System (ADAS) and autonomous driving (AD) technology are more mature and prevalent nowadays. Vehicles being smarter and driving being easier is an unstoppable trend. In the near future, intelligent vehicles will be mass produced and running on the road. However, before the mass-production of intelligent vehicles, a lot of experimental tests and validations need to be carried out to insure the safety and reliability of ADAS and AD technology. Although the road test of real vehicles is the most reliable and accurate test method, it cannot meet the need of rapid development of technology research due to high time and financial cost. Therefore, a high-efficient design and evaluation methodology for ADAS and AD development and test is a must. In this paper, a virtual co-simulation platform based on MATLAB/Simulink, OpenModelica and Unity 3D game engine (MOMU) is proposed. Simulink is used for vehicle control software modeling. OpenModelica simulates vehicle dynamic models written in Modelica. Unity provides visualized display of ADAS simulation and a virtual…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Towability Design Criteria and Equipment Use - Passenger Cars, Vans, and Light-Duty Trucks

Motor Vehicle Council
  • Ground Vehicle Standard
  • J1142_201910
  • Current
Published 2019-10-28 by SAE International in United States
This SAE Recommended Practice describes the type of equipment commonly used with towing equipment, provides information to calculate safe steering loads, and outlines design criteria.
This content contains downloadable datasets
Annotation ability available